1
|
Zhang QL, Zhou T, Chang C, Gu SY, Wang YJ, Liu Q, Zhu Z. Ultrahigh-Flux Water Nanopumps Generated by Asymmetric Terahertz Absorption. PHYSICAL REVIEW LETTERS 2024; 132:184003. [PMID: 38759176 DOI: 10.1103/physrevlett.132.184003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 05/19/2024]
Abstract
Controlling active transport of water through membrane channels is essential for advanced nanofluidic devices. Despite advancements in water nanopump design using techniques like short-range invasion and subnanometer-level control, challenges remain facilely and remotely realizing massive waters active transport. Herein, using molecular dynamic simulations, we propose an ultrahigh-flux nanopump, powered by frequency-specific terahertz stimulation, capable of unidirectionally transporting massive water through asymmetric-wettability membrane channels at room temperature without any external pressure. The key physics behind this terahertz-powered water nanopump is revealed to be the energy flow resulting from the asymmetric optical absorption of water.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- School of Mathematics-Physics and Finance and School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tong Zhou
- School of Mathematics-Physics and Finance and School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics, Peking University, Beijing 100871, China
| | - Shi-Yu Gu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yun-Jie Wang
- School of Mathematics-Physics and Finance and School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Qi Liu
- School of Mathematics-Physics and Finance and School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhi Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
2
|
Zhao LL, Cao XL, Luo C, Wang Q, Lu TD, Tang MJ, Sun SP, Xing W. Locking Patterned Carbon Nanotube Cages by Nanofibrous Mats to Construct Cucurbituril[n]-Based Ultrapermselective Dye/Salt Separation Membranes. NANO LETTERS 2023; 23:4167-4175. [PMID: 37155570 DOI: 10.1021/acs.nanolett.2c05105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Surface patterning is a promising strategy to overcome the trade-off effect of separation membranes. Herein, a bottom-up patterning strategy of locking micron-sized carbon nanotube cages (CNCs) onto a nanofibrous substrate is developed. The strongly enhanced capillary force triggered by the abundant narrow channels in CNCs endows the precisely patterned substrate with excellent wettability and antigravity water transport. Both are crucial for the preloading of cucurbit[n]uril (CB6)-embeded amine solution to form an ultrathin (∼20 nm) polyamide selective layer clinging to CNCs-patterned substrate. The CNCs-patterning and CB6 modification result in a 40.2% increased transmission area, a reduced thickness, and a lowered cross-linking degree of selective layer, leading to a high water permeability of 124.9 L·m-2 h-1 bar-1 and a rejection of 99.9% for Janus Green B (511.07 Da), an order of magnitude higher than that of commercial membranes. The new patterning strategy provides technical and theoretical guidance for designing next-generation dye/salt separation membranes.
Collapse
Affiliation(s)
- Liu-Lin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cong Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Dan Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming-Jian Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Arai N, Yamamoto E, Koishi T, Hirano Y, Yasuoka K, Ebisuzaki T. Wetting hysteresis induces effective unidirectional water transport through a fluctuating nanochannel. NANOSCALE HORIZONS 2023; 8:652-661. [PMID: 36883765 DOI: 10.1039/d2nh00563h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We propose a water pump that actively transports water molecules through nanochannels. Spatially asymmetric noise fluctuations imposed on the channel radius cause unidirectional water flow without osmotic pressure, which can be attributed to hysteresis in the cyclic transition between the wetting/drying states. We show that the water transport depends on fluctuations, such as white, Brownian, and pink noises. Because of the high-frequency components in white noise, fast switching of open and closed states inhibits channel wetting. Conversely, pink and Brownian noises generate high-pass filtered net flow. Brownian fluctuation leads to a faster water transport rate, whereas pink noise has a higher capability to overcome pressure differences in the opposite direction. A trade-off relationship exists between the resonant frequency of the fluctuation and the flow amplification. The proposed pump can be considered as an analogy for the reversed Carnot cycle, which is the upper limit of the energy conversion efficiency.
Collapse
Affiliation(s)
- Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
- Computational Astrophysics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, 223-8522, Japan
| | - Takahiro Koishi
- Department of Applied Physics, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | | |
Collapse
|
4
|
Du Y, Li P, Wen Y, Guan Z. Passive Automatic Switch Relying on Laplace Pressure for Efficient Underwater Low-Gas-Flux Bubble Energy Harvesting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3481-3493. [PMID: 36880226 DOI: 10.1021/acs.langmuir.2c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The buoyancy potential energy contained in bubbles released by subsea geological and biological activities represents a possible in situ energy source for underwater sensing and detection equipment. However, the low gas flux of the bubble seepages that exist widely on the seabed introduces severe challenges. Herein, a passive automatic switch relying on Laplace pressure is proposed for efficient energy harvesting from low-gas-flux bubbles. This switch has no moving mechanical parts; it uses the Laplace-pressure difference across a curved gas-liquid interface in a biconical channel as an invisible "microvalve". If there is mechanical equilibrium between the Laplace-pressure difference and the liquid-pressure difference, the microvalve will remain closed and prevent the release of bubbles as they continue to accumulate. After the accumulated gas reaches a threshold value, the microvalve will open automatically, and the gas will be released rapidly, relying on the positive feedback of interface mechanics. Using this device, the gas buoyancy potential energy entering the energy harvesting system per unit time can be increased by a factor of more than 30. Compared with a traditional bubble energy harvesting system without a switch, this system achieves a 19.55-fold increase in output power and a 5.16-fold enhancement in electrical energy production. The potential energy of ultralow flow rate bubbles (as low as 3.97 mL/min) is effectively collected. This work provides a new design philosophy for passive automatic-switching control of gas-liquid two-phase fluids, presenting an effective approach for harvesting of buoyancy potential energy from low-gas-flux bubble seepages. This opens a promising avenue for in situ energy supply for subsea scientific observation networks.
Collapse
Affiliation(s)
- Yu Du
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yumei Wen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhibin Guan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
5
|
Water jumps over a nanogap between two disjoint carbon nanotubes assisted by thermal fluctuation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Papadopoulou E, Megaridis CM, Walther JH, Koumoutsakos P. Nanopumps without Pressure Gradients: Ultrafast Transport of Water in Patterned Nanotubes. J Phys Chem B 2022; 126:660-669. [DOI: 10.1021/acs.jpcb.1c07562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ermioni Papadopoulou
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich CH-8092, Switzerland
| | - Constantine M. Megaridis
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jens H. Walther
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich CH-8092, Switzerland
- Department of Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich CH-8092, Switzerland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
7
|
Chen X, Zhang X, Li S, Su J. Pressure-driven water flow through a carbon nanotube controlled by a lateral electric field. NEW J CHEM 2022. [DOI: 10.1039/d2nj01235a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tuning the water flow through nanochannels provides a key to many physicochemical phenomena, such as energy harvesting, desalination, biosensors and so on.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Applied Physics, Nanjing, Jiangsu 210094, China
| | - Xinke Zhang
- Department of Applied Physics, Nanjing, Jiangsu 210094, China
| | - Shuang Li
- Department of Applied Physics, Nanjing, Jiangsu 210094, China
| | - Jiaye Su
- Department of Applied Physics, Nanjing, Jiangsu 210094, China
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
8
|
Simulation study on the effects of the self-assembly of nanoparticles on thermal conductivity of nanofluids. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Daivis PJ, Hansen JS, Todd BD. Electropumping of nanofluidic water by linear and angular momentum coupling: theoretical foundations and molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:25003-25018. [PMID: 34739012 DOI: 10.1039/d1cp04139h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this article we review the relatively new phenomenon of electropumping in nanofluidic systems, in which nonzero net flow results when polar molecules are rotated by external electric fields. The flow is a consequence of coupling of the spin angular momentum of molecules with their linear streaming momentum. By devising confining surfaces that are asymmetric - specifically one surface is more hydrophobic compared to the other - unidirectional flow results and so pumping can be achieved without the use of pressure gradients. We first cover the historical background to this phenomenon and follow that with a detailed theoretical description of the governing hydrodynamics. Following that we summarise work that has applied this phenomenon to pump water confined to planar nanochannels, semi-functionalised single carbon nanotubes and concentric carbon nanotubes. We also report on the energy efficiency of this pumping technique by comparisons with traditional flows of planar Couette and Poiseuille flow, with the surprising conclusion that electropumping at the nanoscale is some 4 orders of magnitude more efficient than pumping by Poiseuille flow.
Collapse
Affiliation(s)
- Peter J Daivis
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - J S Hansen
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark.
| | - B D Todd
- Department of Mathematics, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia.
| |
Collapse
|
10
|
Ding C, Zhao Y, Su J. Electropumping Phenomenon in Modified Carbon Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12318-12326. [PMID: 34644087 DOI: 10.1021/acs.langmuir.1c01793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling the water transport in a given direction is essential to the design of novel nanofluidic devices, which is still a challenge because of thermal fluctuations on the nanoscale. In this work, we find an interesting electropumping phenomenon for charge-modified carbon nanotubes (CNTs) through a series of molecular dynamics simulations. In electric fields, the flowing counterions on the CNT inner surface provide a direct driving force for water conduction. Specifically, the dynamics of cations and anions exhibit distinct behaviors that lead to thoroughly different water dynamics in positively and negatively charged CNTs. Because of the competition between the increased ion number and ion-CNT interaction, the cation flux displays an interesting maximum behavior with the increase in surface charge density; however, the anion flux rises further at higher charge density because it is less attractive to the surface. Thus, the anion flux is always several times larger than cation flux that induces a higher water flux in positive CNTs with nearly 100% pumping efficiency, which highly exceeds the efficiency of pristine CNTs. With the change in charge density, the translocation time, occupancy number, and radial density profiles for water and ions also demonstrate a nontrivial difference for positive and negative CNTs. Furthermore, the ion flux exhibits an excellent linear relationship with the field strength, leading to the same water flux behavior. For the change in salt concentration, the pumping efficiency for positive CNTs is also nearly 100%. Our results provide significant new insight into the ionic transport through modified CNTs and should be helpful for the design of nanometer water pumps.
Collapse
|