1
|
Baek JW, Shin E, Lee J, Kim DH, Choi SJ, Kim ID. Present and Future of Emerging Catalysts in Gas Sensors for Breath Analysis. ACS Sens 2025; 10:33-53. [PMID: 39587394 DOI: 10.1021/acssensors.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
To rationalize the noninvasive disease diagnosis by breath analysis, developing a high-performance gas sensor with exceptional sensitivity and selectivity is important to detect trace biomarkers in complex exhaled breath under harsh conditions. Among the various technological innovations, catalyst design and synthesis techniques are the foremost challenges, because gas sensing properties are predominantly determined by surface chemical reactions governed by catalytic activities. Conventional nanoparticle-based catalysts, with their simple structural features, have technical limitations in achieving the requirement for accurate breath analysis. Innovative strategies have been pursued to synthesize unconventional catalyst types with enhanced catalytic capabilities. This Perspective provides a comprehensive overview of recent advancements in catalyst technology for chemiresistive-type gas sensors used in breath analysis. It discusses various emerging catalysts, such as doping catalysts, single-atom catalysts (SACs), bimetallic alloy catalysts, high-entropy alloy (HEA) catalysts, exsolution catalysts, and catalytic filter membranes, along with their unique chemical activation mechanisms that enhance gas sensing properties for detecting target biomarkers in exhaled breath. The review also explores novel strategies for catalyst design, including computational prediction, advanced synthesis techniques, and the integration of sensor arrays with artificial intelligence (AI) to improve diagnostic reliability. By highlighting the crucial role of these emerging catalysts, this review provides valuable insights into the catalytic, synthetic, and analytical aspects that are essential for advancing breath analysis technology.
Collapse
Affiliation(s)
- Jong Won Baek
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Euichul Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinho Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science & Chemical Engineering, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Chen G, Liu J, Chen D. Decorated and reconstructed perovskite-oxide electrodes for oxygen electrocatalysis and Zn-air batteries. J Colloid Interface Sci 2025; 678:506-517. [PMID: 39260299 DOI: 10.1016/j.jcis.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Although decorated nanoparticles offer a great potential to generate extra active sites, their preparation usually requires time- and energy-consuming approaches. We report the remarkable activity and durability augmentation for the oxygen evolution reaction (OER) via effective and facile on-site electrochemical manipulation, using LaNiO3 as a model catalyst. When compared to the pristine LaNiO3, the electrochemically manipulated LaNiO3 cycled in Fe3+-containing 0.1 M KOH (i.e., E-LNO+Fe) exhibits an almost three-fold improvement in current density at 1.65 V. It is experimentally and theoretically shown that the electrochemical manipulation leads to the creation of defective LaNiO3-δ and NiO on the surfaces, which accelerate phase transformation to (oxy)hydroxides and hence the OER. Furthermore, a Zn-air battery assembled with E-LNO+Fe has demonstrated superior activity by presenting 171 mW cm-2. Thus, our work demonstrates that substantial performance increases may be achieved by decorating and reconstructing perovskite-oxide electrodes via on-site electrochemical modification.
Collapse
Affiliation(s)
- Guichan Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jiapeng Liu
- School of Advanced Energy, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Dengjie Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Luo Y, Chang X, Wang J, Zhang D, Fu L, Gu XK, Wang Y, Liu T, Ding M. Precise Regulation of In Situ Exsolution Components of Nanoparticles for Constructing Active Interfaces toward Carbon Dioxide Reduction. ACS NANO 2025; 19:1463-1477. [PMID: 39746182 DOI: 10.1021/acsnano.4c14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems. Herein, we propose a strategy to attain a regulated distribution of exsolved transition metals (Cu, Ni, and Fe) on Sr2Fe1.2Ni0.2Cu0.2Mo0.4O6-δ medium-entropy perovskite oxides by varying the oxygen partial pressure (pO2) gradient in the mixture. At 800 °C, the unitary Cu, binary Cu-Ni, and ternary Cu-Ni-Fe NPs are exsolved as pO2 decreases from high to low. Combining experimental and theoretical simulations, we further corroborate that solid oxide electrolysis cells with ternary alloy clusters at the CNF@SFO interface exhibit superior CO2 electrolytic performance. Our results provide tailored strategies for nanostructures and nanointerfaces for studying metal oxide exsolution systems, including fuel electrode materials.
Collapse
Affiliation(s)
- Yao Luo
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Xu Chang
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Jietao Wang
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Dong Zhang
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Xiang-Kui Gu
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yao Wang
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Tong Liu
- Key Laboratory of Green Chemical Process, Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Mingyue Ding
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
- Academy of Advanced Interdisciplinary Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Yu J, Yang X, Jia Y, Wang ZQ, Li W, Jiang Y, Dai S, Zhan W. Regulating socketed geometry of nanoparticles on perovskite oxide supports for enhanced stability in oxidation reactions. Nat Commun 2024; 15:10229. [PMID: 39587102 PMCID: PMC11589875 DOI: 10.1038/s41467-024-54546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
Heterogeneous catalysts with highly dispersed active particles on supports often face stability challenges during high-temperature industrial applications. The ex-solution strategy, which involves in situ extrusion of metals to form socketed particles, shows potential for addressing this stability issue. However, a deeper understanding of the relationship between the socketed geometry of these partially embedded nanoparticles and their catalytic performance is still lacking. Here, in situ transmission electron microscopy and theoretical calculations are utilized to investigate the oxygen-induced ex-solution process of Pd-doped LaAlO3 with varying concentrations of La vacancies (LaxAl0.9Pd0.1O3-δ). We find that the socketed geometry of Pd-based particles can be tuned by manipulating the levels of La deficiencies in the oxide support, which in turn influences the catalytic performance in high-temperature oxidation reactions. As for the socketed particles, the balance between particle size and outcrop height is crucial for determining the oxidation activity and sinter-resistance behavior. Consequently, the optimized catalyst, La0.8Al0.9Pd0.1O3-δ, exhibits superior catalytic performances, particularly high stability (still working after aging at 1000 °C for 50 h) and water resistance in various combustion reactions (e.g., CH4 oxidation and C3H8 oxidation).
Collapse
Affiliation(s)
- Jihang Yu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Xinwei Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Zhi-Qiang Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Wenbo Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China.
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
5
|
López‐García A, Remiro‐Buenamañana S, Neagu D, Carrillo AJ, Serra JM. Squeezing Out Nanoparticles from Perovskites: Controlling Exsolution with Pressure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403544. [PMID: 39180444 PMCID: PMC11579965 DOI: 10.1002/smll.202403544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Indexed: 08/26/2024]
Abstract
Nanoparticle exsolution has emerged as a versatile method to functionalize oxides with robust metallic nanoparticles for catalytic and energy applications. By modifying certain external parameters during thermal reduction (temperature, time, reducing gas), some morphological and/or compositional properties of the exsolved nanoparticles can be tuned. Here, it is shown how the application of high pressure (<100 bar H2) enables the control of the exsolution of ternary FeCoNi alloyed nanoparticles from a double perovskite. H2 pressure affects the lattice expansion and the nanoparticle characteristics (size, population, and composition). The composition of the alloyed nanoparticles could be controlled, showing a reversal of the expected thermodynamic trend at 10 and 50 bar, where Fe becomes the main component instead of Ni. In addition, pressure drastically lowers the exsolution temperature to 300 °C, resulting in unprecedented highly-dispersed and small-sized nanoparticles with a similar composition to those obtained at 600 °C and 10 bar. The mechanisms behind the effects of pressure on exsolution are discussed, involving kinetic, surface thermodynamics, and lattice-strain factors. A volcano-like trend of the exsolution extent suggests that competing pressure-dependent mechanisms govern the process. Pressure emerges as a new design tool for metallic nanoparticle exsolution enabling novel nanocatalysts and surface-functionalized materials.
Collapse
Affiliation(s)
- Andrés López‐García
- Instituto de Tecnología Química (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)València46022Spain
| | - Sonia Remiro‐Buenamañana
- Instituto de Tecnología Química (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)València46022Spain
| | - Dragos Neagu
- Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowG1 1XQUnited Kingdom
| | - Alfonso J. Carrillo
- Instituto de Tecnología Química (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)València46022Spain
| | - José Manuel Serra
- Instituto de Tecnología Química (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)València46022Spain
| |
Collapse
|
6
|
Zamudio-García J, Chiabrera F, Morin-Martínez A, Castelli IE, Losilla ER, Marrero-López D, Esposito V. Hierarchical exsolution in vertically aligned heterostructures. Nat Commun 2024; 15:8961. [PMID: 39420207 PMCID: PMC11487182 DOI: 10.1038/s41467-024-53252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Metal nanoparticle exsolution from metal oxide hosts has recently garnered great attention to improve the performance of energy conversion and storage devices. In this study, the nickel exsolution mechanisms in a vertically aligned nanostructure (VAN) thin film of heteroepitaxial (Sr0.9Pr0.1)0.9Ti0.9Ni0.1O3-δ-Ce0.9Gd0.1O1.95 with a columnar architecture was investigated for the first time. Experimental results and Density Functional Theory (DFT) calculations reveal that the multiple vertical interphases in a VAN with a hierarchical arrangement provide faster and more selective Ni diffusion pathways to the surface than traditional bulk diffusion in epitaxial films. Kinetic studies conducted at different temperatures and times indicate that the nucleation process of the exsolved metal nanoparticles primarily takes place at the surface through the phase boundaries of the columns. The vertical strain is crucial in preserving the film's microstructure, yielding a robust heteroepitaxial architecture after reduction. This innovative heteromaterial opens up new possibilities for designing efficient devices through advanced structural engineering to achieve controlled nanoparticle formation.
Collapse
Affiliation(s)
- Javier Zamudio-García
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark.
- Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Málaga, Spain.
| | - Francesco Chiabrera
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark
| | - Armando Morin-Martínez
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark
| | - Ivano E Castelli
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark
| | - Enrique R Losilla
- Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Málaga, Spain
| | | | - Vincenzo Esposito
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
7
|
Jo S, Gilliard-AbdulAziz KL. Self-Regenerative Ni-Doped CaTiO 3/CaO for Integrated CO 2 Capture and Dry Reforming of Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401156. [PMID: 38686695 DOI: 10.1002/smll.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/27/2024] [Indexed: 05/02/2024]
Abstract
In this work, a new type of multifunctional materials (MFMs) called self-regenerative Ni-doped CaTiO3/CaO is introduced for the integrated CO2 capture and dry reforming of methane (ICCDRM). These materials consist of a catalytically active Ni-doped CaTiO3 and a CO2 sorbent, CaO. The article proposes a concept where the Ni catalyst can be regenerated in situ, which is crucial for ICCDRM. Exsolved Ni nanoparticles are evenly distributed on the surface of CaTiO3 under H2 or CH4, and are re-dispersed back into the CaTiO3 lattice under CO2. The Ni-doped CaTiO3/CaO MFMs show stable CO2 capture capacity and syngas productivity for 30 cycles of ICCDRM. The presence of CaTiO3 between CaO grains prevents CaO/CaCO3 thermal sintering during carbonation and decarbonation. Moreover, the strong interaction of CaTiO3 with exsolved Ni mitigates severe accumulation of coke deposition. This concept can be useful for developing MFMs with improved properties that can advance integrated carbon capture and conversion.
Collapse
Affiliation(s)
- Seongbin Jo
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, 90089, USA
| | - Kandis Leslie Gilliard-AbdulAziz
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
8
|
Bonkowski A, Wolf MJ, Wu J, Parker SC, Klein A, De Souza RA. A Single Model for the Thermodynamics and Kinetics of Metal Exsolution from Perovskite Oxides. J Am Chem Soc 2024; 146:23012-23021. [PMID: 39116036 PMCID: PMC11345767 DOI: 10.1021/jacs.4c03412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Exsolution has emerged as an outstanding route for producing oxide-supported metal nanoparticles. For ABO3-perovskite oxides, various late transition-metal cations can be substituted into the lattice under oxidizing conditions and exsolved as metal nanoparticles after reduction. A consistent and comprehensive description of the point-defect thermodynamics and kinetics of this phenomenon is lacking, however. Herein, supported by hybrid density-functional-theory calculations, we propose a single model that explains diverse experimental observations, such as why substituent transition-metal cations (but not host cations) exsolve from perovskite oxides upon reduction; why different substituent transition-metal cations exsolve under different conditions; why the metal nanoparticles are embedded in the surface; why exsolution occurs surprisingly rapidly at relatively low temperatures; and why the reincorporation of exsolved species involves far longer times and much higher temperatures. Our model's foundation is that the substituent transition-metal cations are reduced to neutral species within the perovskite lattice as the Fermi level is shifted upward within the bandgap upon sample reduction. The calculations also indicate unconventional influences of oxygen vacancies and A-site vacancies. Our model thus provides a fundamental basis for improving existing, and creating new, exsolution-generated catalysts.
Collapse
Affiliation(s)
- Alexander Bonkowski
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - Matthew J. Wolf
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - Ji Wu
- Department
of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, U.K.
| | - Stephen C. Parker
- Department
of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, U.K.
| | - Andreas Klein
- Institute
of Materials Science, Technical University
of Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Roger A. De Souza
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| |
Collapse
|
9
|
Guo J, Berenov A, Skinner SJ. In situ investigation of ruthenium doped lanthanum nickel titanium double perovskite and its exsolution behaviour. NANOSCALE ADVANCES 2024; 6:4394-4406. [PMID: 39170972 PMCID: PMC11334975 DOI: 10.1039/d4na00349g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
Exsolution, an innovative method for fabricating perovskite-based oxides decorated with metal nanoparticles, has garnered significant interest in the fields of catalyst fabrication and electrochemical devices. Although dopant exsolution from single perovskite structures has been extensively studied, the exsolution behaviour of double perovskite structures remains insufficiently understood. In this study, we synthesized B-site double perovskite Ru-doped lanthanum nickel titanates with a 7.5 at% A-site deficiency, and systematically investigated the exsolution process that formed nickel metal nanoparticles on the material surface, across a broad reduction temperature range of 350-1000 °C. Both Ex situ and in situ characterization revealed that small, uniform Ni nanoparticles exsolved at low temperatures, whereas the exsolution of ruthenium required higher reduction temperatures beyond 1000 °C. Within the reduction temperature range of 350-500 °C, a notable finding is the reconstruction of exsolved nanoparticles, implying that Ni particles exist in a thermodynamically metastable state. Electrochemical impedance spectroscopy (EIS) showed a decreased area specific resistance (ASR) during the progress of exsolution. The increase in current density of a full solid oxide cell (SOC) in electrolysis mode and the doubling of peak power density in fuel cell mode attributed to the exsolution of Ni nanoparticles highlight the potential application of metal exsolution in electrode materials for SOCs.
Collapse
Affiliation(s)
- Jia Guo
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Andrey Berenov
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Stephen J Skinner
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
- International Institute for Carbon Neutral Energy Research, Kyushu University Fukuoka Japan
| |
Collapse
|
10
|
Lee Y, Yoon D, Nam YS, Yu S, Lim C, Sim H, Park Y, Han JW, Choi SY, Son J. Accelerating metal nanoparticle exsolution by exploiting tolerance factor of perovskite stannate. MATERIALS HORIZONS 2024; 11:3835-3843. [PMID: 38835315 DOI: 10.1039/d4mh00294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The octahedral symmetry in ionic crystals can play a critical role in atomic nucleation and migration during solid-solid phase transformation. Similarly, octahedron distortion, which is characterized by Goldschmidt tolerance factor, strongly influences the exsolution kinetics in the perovskite lattice framework during high-temperature annealing. However, a fundamental study on manipulating the exsolution process by octahedron distortion is still lacking. In this study, we accelerate Ni metal exsolution on the surface of perovskite stannates by increasing the [BO6] octahedron distortion in the lattices. Decreasing the A-site ionic radius (rBa2+ = 161 pm → rSr2+ = 144 pm → rCa2+ = 134 pm) increased the density of exsolved Ni nanoparticles by up to 640% (i.e., 47 particles μm-2 of Ba(Sn, Ni)O3 → 304 particles μm-2 of Ca(Sn, Ni)O3) after the identical exsolution process. Based on the theoretical calculation and experimental characterization, the decrease in crystal symmetry by octahedral distortion promoted the Ni exsolution owing to the boosted Ni migration by weakening the bond strength and generating domain boundaries. The findings highlight the importance of octahedral distortion to control atomic migration through the perovskite lattice framework and provide a strategy to tailor the density of uniformly populated nanoparticles in nanocomposite oxides for multifunctional material design.
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daseob Yoon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Yeon-Seo Nam
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Sangbae Yu
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Chaesung Lim
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hyeji Sim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Yunkyu Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Jeong Woo Han
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Junwoo Son
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Chen X, Yu N, Song Y, Liu T, Xu H, Guan D, Li Z, Huang WH, Shao Z, Ciucci F, Ni M. Synergistic Bulk and Surface Engineering for Expeditious and Durable Reversible Protonic Ceramic Electrochemical Cells Air Electrode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403998. [PMID: 38801699 DOI: 10.1002/adma.202403998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Reversible protonic ceramic electrochemical cells (R-PCECs) offer the potential for high-efficiency power generation and green hydrogen production at intermediate temperatures. However, the commercial viability of R-PCECs is hampered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) within conventional air electrodes operating at reduced temperatures. To address this challenge, this work introduces a novel approach based on the simultaneous optimization of bulk-phase metal-oxygen bonds and in-situ formation of a metal oxide nano-catalyst surface modification. This strategy is designed to expedite the ORR/OER electrocatalytic activity of air electrodes exhibiting triple (O2-, H+, e-) conductivity. Specifically, this engineered air electrode nanocomposite-Ba(Co0.4Fe0.4Zr0.1Y0.1)0.95Ni0.05F0.1O2.9-δ demonstrates remarkable ORR/OER catalytic activity and exceptional durability in R-PCECs. This is evidenced by significantly improved peak power density from 626 to 996 mW cm-2 and highly stable reversibility over a 100-h cycling period. This research offers a rational design strategy to achieve high-performance R-PCEC air electrodes with superior operational activity and stability for efficient and sustainable energy conversion and storage.
Collapse
Affiliation(s)
- Xi Chen
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Na Yu
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yufei Song
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Daqin Guan
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Zheng Li
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
12
|
Chen M, Xu Y, Zhang Y, Zhang Z, Li X, Wang Q, Huang M, Fang W, Zhang Y, Jiang H, Zhu Y, Zhu J. Promoting CO 2 Electroreduction Over Nano-Socketed Cu/Perovskite Heterostructures via A-Site-Valence-Controlled Oxygen Vacancies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400615. [PMID: 38477702 DOI: 10.1002/smll.202400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Despite the intriguing potential, nano-socketed Cu/perovskite heterostructures for CO2 electroreduction (CO2RR) are still in their infancy and rational optimization of their CO2RR properties is lacking. Here, an effective strategy is reported to promote CO2-to-C2+ conversion over nano-socketed Cu/perovskite heterostructures by A-site-valence-controlled oxygen vacancies. For the proof-of-concept catalysts of Cu/La0.3-xSr0.6+xTiO3-δ (x from 0 to 0.3), their oxygen vacancy concentrations increase controllably with the decreased A-site valences (or the increased x values). In flow cells, their activity and selectivity for C2+ present positive correlations with the oxygen vacancy concentrations. Among them, the Cu/Sr0.9TiO3-δ with most oxygen vacancies shows the optimal activity and selectivity for C2+. And relative to the Cu/La0.3Sr0.6TiO3-δ with minimum oxygen vacancies, the Cu/Sr0.9TiO3-δ exhibits marked improvements (up to 2.4 folds) in activity and selectivity for C2+. The experiments and theoretical calculations suggest that the optimized performance can be attributed to the merits provided by oxygen vacancies, including the accelerated charge transfer, enhanced adsorption/activation of reaction species, and reduced energy barrier for C─C coupling. Moreover, when explored in a membrane-electrode assembly electrolyzer, the Cu/Sr0.9TiO3-δ catalyst shows excellent activity, selectivity (43.9%), and stability for C2H4 at industrial current densities, being the most effective perovskite-based catalyst for CO2-to-C2H4 conversion.
Collapse
Affiliation(s)
- Mingfa Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yunze Xu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Yu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Zhenbao Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Xueyan Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qi Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Wei Fang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Heqing Jiang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| |
Collapse
|
13
|
Carrillo AJ, López-García A, Delgado-Galicia B, Serra JM. New trends in nanoparticle exsolution. Chem Commun (Camb) 2024; 60:7987-8007. [PMID: 38899785 DOI: 10.1039/d4cc01983k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Many relevant high-temperature chemical processes require the use of oxide-supported metallic nanocatalysts. The harsh conditions under which these processes operate can trigger catalyst degradation via nanoparticle sintering, carbon depositions or poisoning, among others. This primarily affects metallic nanoparticles created via deposition methods with low metal-support interaction. In this respect, nanoparticle exsolution has emerged as a promising method for fabricating oxide-supported nanocatalysts with high interaction between the metal and the oxide support. This is due to the mechanism involved in nanoparticle exsolution, which is based on the migration of metal cations in the oxide support to its surface, where they nucleate and grow as metallic nanoparticles partially embedded in the oxide. This anchorage confers high robustness against sintering or coking-related problems. For these reasons, exsolution has attracted great interest in the last few years. Multiple works have been devoted to proving the high catalytic stability of exsolved metallic nanoparticles in several applications for high-temperature energy storage and conversion. Additionally, considerable attention has been directed towards understanding the underlying mechanism of metallic nanoparticle exsolution. However, this growing field has not been limited to these types of studies and recent discoveries at the forefront of materials design have opened new research avenues. In this work, we define six new trends in nanoparticle exsolution, taking a tour through the most important advances that have been recently reported.
Collapse
Affiliation(s)
- Alfonso J Carrillo
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Andrés López-García
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Blanca Delgado-Galicia
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Jose M Serra
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
14
|
Weber ML, Šmíd B, Breuer U, Rose MA, Menzler NH, Dittmann R, Waser R, Guillon O, Gunkel F, Lenser C. Space charge governs the kinetics of metal exsolution. NATURE MATERIALS 2024; 23:406-413. [PMID: 38168807 PMCID: PMC10917682 DOI: 10.1038/s41563-023-01743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Nanostructured composite electrode materials play a major role in the fields of catalysis and electrochemistry. The self-assembly of metallic nanoparticles on oxide supports via metal exsolution relies on the transport of reducible dopants towards the perovskite surface to provide accessible catalytic centres at the solid-gas interface. At surfaces and interfaces, however, strong electrostatic gradients and space charges typically control the properties of oxides. Here we reveal that the nature of the surface-dopant interaction is the main determining factor for the exsolution kinetics of nickel in SrTi0.9Nb0.05Ni0.05O3-δ. The electrostatic interaction of dopants with surface space charge regions forming upon thermal oxidation results in strong surface passivation, which manifests in a retarded exsolution response. We furthermore demonstrate the controllability of the exsolution response via engineering of the perovskite surface chemistry. Our findings indicate that tailoring the electrostatic gradients at the perovskite surface is an essential step to improve exsolution-type materials in catalytic converters.
Collapse
Affiliation(s)
- Moritz L Weber
- Peter Gruenberg Institute - Electronic Materials (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany.
- Institute of Energy and Climate Research - Materials Synthesis and Processing (IEK-1), Forschungszentrum Juelich GmbH, Juelich, Germany.
- Juelich-Aachen Research Alliance (JARA-FIT), Juelich, Germany.
- Institute of Mineral Engineering (GHI), RWTH Aachen University, Aachen, Germany.
| | - Břetislav Šmíd
- Department of Surface and Plasma Science, Charles University, Prague, Czech Republic
| | - Uwe Breuer
- Central Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Marc-André Rose
- Peter Gruenberg Institute - Electronic Materials (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany
- Juelich-Aachen Research Alliance (JARA-FIT), Juelich, Germany
- Institute for Electronic Materials (IWE 2), RWTH Aachen University, Aachen, Germany
| | - Norbert H Menzler
- Institute of Energy and Climate Research - Materials Synthesis and Processing (IEK-1), Forschungszentrum Juelich GmbH, Juelich, Germany
- Institute of Mineral Engineering (GHI), RWTH Aachen University, Aachen, Germany
| | - Regina Dittmann
- Peter Gruenberg Institute - Electronic Materials (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany
- Juelich-Aachen Research Alliance (JARA-FIT), Juelich, Germany
| | - Rainer Waser
- Peter Gruenberg Institute - Electronic Materials (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany
- Juelich-Aachen Research Alliance (JARA-FIT), Juelich, Germany
- Institute for Electronic Materials (IWE 2), RWTH Aachen University, Aachen, Germany
| | - Olivier Guillon
- Institute of Energy and Climate Research - Materials Synthesis and Processing (IEK-1), Forschungszentrum Juelich GmbH, Juelich, Germany
- Institute of Mineral Engineering (GHI), RWTH Aachen University, Aachen, Germany
- Juelich-Aachen Research Alliance (JARA-Energy), Juelich, Germany
| | - Felix Gunkel
- Peter Gruenberg Institute - Electronic Materials (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany.
- Juelich-Aachen Research Alliance (JARA-FIT), Juelich, Germany.
| | - Christian Lenser
- Institute of Energy and Climate Research - Materials Synthesis and Processing (IEK-1), Forschungszentrum Juelich GmbH, Juelich, Germany.
| |
Collapse
|
15
|
Liu S, Dun C, Jiang Q, Xuan Z, Yang F, Guo J, Urban JJ, Swihart MT. Challenging thermodynamics: combining immiscible elements in a single-phase nano-ceramic. Nat Commun 2024; 15:1167. [PMID: 38326434 PMCID: PMC10850329 DOI: 10.1038/s41467-024-45413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
The Hume-Rothery rules governing solid-state miscibility limit the compositional space for new inorganic material discovery. Here, we report a non-equilibrium, one-step, and scalable flame synthesis method to overcome thermodynamic limits and incorporate immiscible elements into single phase ceramic nanoshells. Starting from prototype examples including (NiMg)O, (NiAl)Ox, and (NiZr)Ox, we then extend this method to a broad range of Ni-containing ceramic solid solutions, and finally to general binary combinations of elements. Furthermore, we report an "encapsulated exsolution" phenomenon observed upon reducing the metastable porous (Ni0.07Al0.93)Ox to create ultra-stable Ni nanoparticles embedded within the walls of porous Al2O3 nanoshells. This nanoconfined structure demonstrated high sintering resistance during 640 h of catalysis of CO2 reforming of methane, maintaining constant 96% CH4 and CO2 conversion at 800 °C and dramatically outperforming conventional catalysts. Our findings could greatly expand opportunities to develop novel inorganic energy, structural, and functional materials.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Qike Jiang
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Zhengxi Xuan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Feipeng Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
- RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
16
|
López-García A, Domínguez-Saldaña A, Carrillo AJ, Navarrete L, Valls MI, García-Baños B, Plaza-Gonzalez PJ, Catala-Civera JM, Serra JM. Microwave-Driven Exsolution of Ni Nanoparticles in A-Site Deficient Perovskites. ACS NANO 2023; 17:23955-23964. [PMID: 37974412 PMCID: PMC10722607 DOI: 10.1021/acsnano.3c08534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Exsolution has emerged as a promising method for generating metallic nanoparticles, whose robustness and stability outperform those of more conventional deposition methods, such as impregnation. In general, exsolution involves the migration of transition metal cations, typically perovskites, under reducing conditions, leading to the nucleation of well-anchored metallic nanoparticles on the oxide surface with particular properties. There is growing interest in exploring alternative methods for exsolution that do not rely on high-temperature reduction via hydrogen. For example, utilizing electrochemical potentials or plasma technologies has shown promising results in terms of faster exsolution, leading to better dispersion of nanoparticles under milder conditions. To avoid limitations in scaling up exhibited by electrochemical cells and plasma-generation devices, we proposed a method based on pulsed microwave (MW) radiation to drive the exsolution of metallic nanoparticles. Here, we demonstrate the H2-free MW-driven exsolution of Ni nanoparticles from lanthanum strontium titanates, characterizing the mechanism that provides control over nanoparticle size and dispersion and enhanced catalytic activity and stability for CO2 hydrogenation. The presented method will enable the production of metallic nanoparticles with a high potential for scalability, requiring short exposure times and low temperatures.
Collapse
Affiliation(s)
- Andrés López-García
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Av. dels Tarongers, 46022 València, Spain
| | - Aitor Domínguez-Saldaña
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Av. dels Tarongers, 46022 València, Spain
| | - Alfonso J. Carrillo
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Av. dels Tarongers, 46022 València, Spain
| | - Laura Navarrete
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Av. dels Tarongers, 46022 València, Spain
| | - Maria I. Valls
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Av. dels Tarongers, 46022 València, Spain
| | - Beatriz García-Baños
- Instituto
ITACA, Universitat Politècnica de
València, Camí de Vera, 46022 València, Spain
| | | | | | - José Manuel Serra
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Av. dels Tarongers, 46022 València, Spain
| |
Collapse
|
17
|
Kim YH, Jeong H, Won BR, Jeon H, Park CH, Park D, Kim Y, Lee S, Myung JH. Nanoparticle Exsolution on Perovskite Oxides: Insights into Mechanism, Characteristics and Novel Strategies. NANO-MICRO LETTERS 2023; 16:33. [PMID: 38015283 PMCID: PMC10684483 DOI: 10.1007/s40820-023-01258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications, including fuel cells, chemical conversion, and batteries. Nanocatalysts demonstrate high activity by expanding the number of active sites, but they also intensify deactivation issues, such as agglomeration and poisoning, simultaneously. Exsolution for bottom-up synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials. Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process. Their uniformity and stability, resulting from the socketed structure, play a crucial role in the development of novel nanocatalysts. Recently, tremendous research efforts have been dedicated to further controlling exsolution particles. To effectively address exsolution at a more precise level, understanding the underlying mechanism is essential. This review presents a comprehensive overview of the exsolution mechanism, with a focus on its driving force, processes, properties, and synergetic strategies, as well as new pathways for optimizing nanocatalysts in diverse applications.
Collapse
Affiliation(s)
- Yo Han Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyeongwon Jeong
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Bo-Ram Won
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyejin Jeon
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chan-Ho Park
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dayoung Park
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeeun Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Somi Lee
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jae-Ha Myung
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
18
|
Koohfar S, Ghasemi M, Hafen T, Dimitrakopoulos G, Kim D, Pike J, Elangovan S, Gomez ED, Yildiz B. Improvement of oxygen reduction activity and stability on a perovskite oxide surface by electrochemical potential. Nat Commun 2023; 14:7203. [PMID: 37938236 PMCID: PMC10632449 DOI: 10.1038/s41467-023-42462-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
The instability of the surface chemistry in transition metal oxide perovskites is the main factor hindering the long-term durability of oxygen electrodes in solid oxide electrochemical cells. The instability of surface chemistry is mainly due to the segregation of A-site dopants from the lattice to the surface. Here we report that cathodic potential can remarkably improve the stability in oxygen reduction reaction and electrochemical activity, by decomposing the near-surface region of the perovskite phase in a porous electrode made of La1-xSrxCo1-xFexO3 mixed with Sm0.2Ce0.8O1.9. Our approach combines X-ray photoelectron spectroscopy and secondary ion mass spectrometry for surface and sub-surface analysis. Formation of Ruddlesden-Popper phase is accompanied by suppression of the A-site dopant segregation, and exsolution of catalytically active Co particles onto the surface. These findings reveal the chemical and structural elements that maintain an active surface for oxygen reduction, and the cathodic potential is one way to generate these desirable chemistries.
Collapse
Affiliation(s)
- Sanaz Koohfar
- Laboratory for Electrochemical Interfaces, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Masoud Ghasemi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | | | - Georgios Dimitrakopoulos
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dongha Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jenna Pike
- OxEon Energy, LLC, North Salt Lake, UT, USA
| | | | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Bilge Yildiz
- Laboratory for Electrochemical Interfaces, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Wintzheimer S, Luthardt L, Cao KLA, Imaz I, Maspoch D, Ogi T, Bück A, Debecker DP, Faustini M, Mandel K. Multifunctional, Hybrid Materials Design via Spray-Drying: Much more than Just Drying. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306648. [PMID: 37840431 DOI: 10.1002/adma.202306648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.
Collapse
Affiliation(s)
- Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Leoni Luthardt
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Andreas Bück
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Damien P Debecker
- Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1, 348, Louvain-la-Neuve, Belgium
| | - Marco Faustini
- Sorbonne Université, Collège de France, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
20
|
Ahn J, Park S, Oh D, Lim Y, Nam JS, Kim J, Jung W, Kim ID. Rapid Joule Heating Synthesis of Oxide-Socketed High-Entropy Alloy Nanoparticles as CO 2 Conversion Catalysts. ACS NANO 2023. [PMID: 37229643 DOI: 10.1021/acsnano.3c00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The unorthodox surface chemistry of high-entropy alloy nanoparticles (HEA-NPs), with numerous interelemental synergies, helps catalyze a variety of essential chemical processes, such as the conversion of CO2 to CO, as a sustainable path to environmental remediation. However, the risk of agglomeration and phase separation in HEA-NPs during high-temperature operations are lasting issues that impede their practical viability. Herein, we present HEA-NP catalysts that are tightly sunk in an oxide overlayer for promoting the catalytic conversion of CO2 with exceptional stability and performance. We demonstrated the controlled formation of conformal oxide overlayers on carbon nanofiber surfaces via a simple sol-gel method, which facilitated a large uptake of metal precursor ions and helped to decrease the reaction temperature required for nanoparticle formation. During the rapid thermal shock synthesis process, the oxide overlayer would also impede nanoparticle growth, resulting in uniformly distributed small HEA-NPs (2.37 ± 0.78 nm). Moreover, these HEA-NPs were firmly socketed in the reducible oxide overlayer, enabling an ultrastable catalytic performance involving >50% CO2 conversion with >97% selectivity to CO for >300 h without extensive agglomeration. Altogether, we establish the rational design principles for the thermal shock synthesis of high-entropy alloy nanoparticles and offer a helpful mechanistic perspective on how the oxide overlayer impacts the nanoparticle synthesis behavior, providing a general platform for the designed synthesis of ultrastable and high-performance catalysts that could be utilized for various industrially and environmentally relevant chemical processes.
Collapse
Affiliation(s)
- Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seyeon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yunsung Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Seok Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
21
|
Islam MS, Mathur L, Namgung Y, Singh B, Park JY, Song SJ. Tailoring the microstructure of BiVO 4 sensing electrode by nanoparticle decoration and its effect on hazardous NH 3 sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131588. [PMID: 37172388 DOI: 10.1016/j.jhazmat.2023.131588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023]
Abstract
Real-time monitoring and quantification of exhaust pollutants is crucial but is troublesome because of extremely harsh thermochemical conditions, and in this regard mixed-potential sensing technology can be a realistic solution. In this study, BiVO4 nanoparticles are decorated onto the preformed porous sensing electrode (SE) backbone by homogeneous infiltration process to improve the sensing performance in mixed-potential sensor. The influence of nanoparticle decoration on phase composition, microstructure and sensing performance are analyzed by physical and electrochemical techniques. Corresponding results indicate that the microstructure tailoring enhances the sensor performance, by extending the triple phase boundary (TPB) and surface area of SE itself. The sensitivity (-119.47 mV/decade) and response time (20 s) of i-BVO SE-based sensor at 600 ℃ are 20 % higher and 8 s faster than bare BiVO4 SE-based sensor (99.24 mV/decade and 28 s). Additionally, the i-BVOǀYSZǀPt cell exhibits good selectivity and cross-sensitivity toward NH3 without any dependency on oxygen partial pressure (pO2). The fabricated sensor is also found stable towards cyclic and long-term operations. Electrochemical Impendence Spectroscopy (EIS) and DC polarization studies were performed to confirm the mixed-potential behavior. Conclusively, the superior sensing performance of i-BVO SE compared to various oxide based SEs highlights its suitability for mixed-potential NH3 sensing.
Collapse
Affiliation(s)
- Md Shoriful Islam
- Ionics Lab, School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Lakshya Mathur
- Ionics Lab, School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Yeon Namgung
- Ionics Lab, School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Bhupendra Singh
- Ionics Lab, School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Jun-Young Park
- Faculty of Nano Technology and Advanced Materials Engineering, Sejong University, Seoul 143-747, the Republic of Korea.
| | - Sun-Ju Song
- Ionics Lab, School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, the Republic of Korea.
| |
Collapse
|
22
|
Li M, Feng M, Guo C, Qiu S, Zhang L, Zhao D, Guo H, Zhang K, Wang F. Green and Efficient Al-Doped LaFe xAl 1-xO 3 Perovskite Oxide for Enhanced Phosphate Adsorption with Creation of Oxygen Vacancies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16942-16952. [PMID: 36961428 DOI: 10.1021/acsami.2c19513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
La-based metal oxide materials are environmentally friendly and show promise for phosphate adsorption. A series of Al-doped perovskite oxides, such as LaFexAl1-xO3, were prepared using a facile citric acid-assisted sol-gel method. The characterization results demonstrated that with optimized Al doping, there was a significant increase in the specific surface area and increased defect content of perovskite oxide LaFexAl1-xO3. Adsorption experiments showed that the performance of phosphate removal by LaFexAl1-xO3 was largely enhanced due to the improved adsorption capacity, which is maximum eight times higher compared with control perovskites prepared under neutral conditions. The mass transfer rate for adsorption was considerably boosted with phosphate removal within the initial 15 min. Spectroscopy analysis and density functional theory calculation results showed that the process of phosphate removal by the Al-doped perovskite oxides LaFexAl1-xO3 involved electrostatic interactions, an inner-sphere complex, and surface oxygen vacancies, among which the creation of oxygen vacancies caused by the Al doping was the predominant mechanism for reducing the bonding barrier during adsorption and generating adsorption sites. The results enable the development of a green and efficient perovskite adsorbent with a La-based perovskite material for phosphorus removal.
Collapse
Affiliation(s)
- Mengmeng Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Menghan Feng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Changbin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
- College of Grass Industry and Environmental Science, Xinjiang Agricultural University, Urumqi 830052, People's Republic of China
| | - Shangkai Qiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Lisheng Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Di Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| |
Collapse
|
23
|
Kim DH, Kim JK, Oh D, Park S, Kim YB, Ko J, Jung W, Kim ID. Ex-Solution Hybrids Functionalized on Oxide Nanofibers for Highly Active and Durable Catalytic Materials. ACS NANO 2023; 17:5842-5851. [PMID: 36916684 DOI: 10.1021/acsnano.2c12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ex-solution catalysts containing spontaneously formed metal nanoparticles socketed on the surface of reservoir oxides have recently been employed in various research fields including catalysis and sensing, due to the process efficiency and outstanding chemical/thermal stability. However, since the ex-solution process accompanies harsh reduction heat treatment, during which many oxides undergo phase decomposition, it restricts material selection and further advancement. Herein, we propose an elaborate design principle to uniformly functionalize ex-solution catalysts at porous oxide frameworks via an electrospinning process. As a case study, we selected the ex-solved La0.6Ca0.4Fe0.95Co0.05-xNixO3-δ (x = 0, 0.025 and 0.05) and SnO2 nanofibers as ex-solution hybrids and main frameworks, respectively. We confirmed superior dimethyl sulfide (C2H6S) gas sensing characteristics with excellent long-cycling stability. In particular, the high catalytic activities of ex-solved CoNiFe ternary nanoparticles, strongly socketed on reservoir oxide, accelerate the spillover process of O2 to dramatically enhance the response toward sulfuric analytes with exceptional tolerance. Altogether, our contribution represents an important stepping-stone to a rational design of ex-solved particle-reservoir oxide hybrids functionalized on porous oxide scaffolds for a variety of applications.
Collapse
Affiliation(s)
- Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jun Kyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seyeon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong Beom Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaehyun Ko
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
24
|
Ruh T, Berkovec D, Schrenk F, Rameshan C. Exsolution on perovskite oxides: morphology and anchorage of nanoparticles. Chem Commun (Camb) 2023; 59:3948-3956. [PMID: 36916176 PMCID: PMC10065136 DOI: 10.1039/d3cc00456b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Perovskites are very promising materials for a wide range of applications (such as catalysis, solid oxide fuel cells…) due to beneficial general properties (e.g. stability at high temperatures) and tunability - doping both A- and B-site cations opens the path to a materials design approach that allows specific properties to be finely tuned towards applications. A major asset of perovskites is the ability to form nanoparticles on the surface under certain conditions in a process called "exsolution". Exsolution leads to the decoration of the material's surface with finely dispersed nanoparticles (which can be metallic or oxidic - depending on the experimental conditions) made from B-site cations of the perovskite lattice (here, doping comes into play, as B-site doping allows control over the constitution of the nanoparticles). In fact, the ability to undergo exsolution is one of the main reasons that perovskites are currently a hot topic of intensive research in catalysis and related fields. Exsolution on perovskites has been heavily researched in the last couple of years: various potential catalysts have been tested with different reactions, the oxide backbone materials and the exsolved nanoparticles have been investigated with a multitude of different methods, and the effect of different exsolution parameters on the resulting nanoparticles has been studied. Despite all this, to our knowledge no comprehensive effort was made so far to evaluate these studies with respect to the effect that the exsolution conditions have on anchorage and morphology of the nanoparticles. Therefore, this highlight aims to provide an overview of nanoparticles exsolved from oxide-based perovskites with a focus on the conditions leading to nanoparticle exsolution.
Collapse
Affiliation(s)
- Thomas Ruh
- Chair of Physical Chemistry, Montanuniversity Leoben, 8700 Leoben, Austria. .,Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
| | | | - Florian Schrenk
- Chair of Physical Chemistry, Montanuniversity Leoben, 8700 Leoben, Austria.
| | - Christoph Rameshan
- Chair of Physical Chemistry, Montanuniversity Leoben, 8700 Leoben, Austria. .,Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
| |
Collapse
|
25
|
Kim YB, Kim S, Kim J, Kim JK, Jeong SJ, Oh D, Jung W. Synthesis of Highly Tunable Alloy Nanocatalyst through Heterogeneous Doping Method. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204693. [PMID: 36509675 PMCID: PMC9929244 DOI: 10.1002/advs.202204693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The combination of supported metal nanoparticles and functional host oxides catalyze many major industrial reactions. However, uniform dispersion and ideal chemical configuration of such nanoparticles, which determines the catalytic activity, are often difficult to achieve. In this study, a unique combination is proposed of heterogeneous doping and ex-solution for the fabrication of Pt-Ni alloy nanoparticles on CeO2 . By manipulating the reducing conditions, both the particle size and composition are precisely controlled, thereby achieving a highly dispersed and stable alloy nanocatalyst. The unique behavior of controlled alloy composition is elucidated through classical diffusion and precipitation kinetics with elemental analysis of the grain boundaries. Finally, Pt-Ni alloy nanocatalysts are successfully tuned showcasing a breakthrough performance compared to single element catalyst in reverse water gas shift reaction with superior stability and reproducibility.
Collapse
Affiliation(s)
- Yong Beom Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Seunghyun Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jinwook Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jun Kyu Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
- Present address:
Samsung Advanced Institute of Technology (SAIT)130 Samsung‐ro, YeongtongguSuwon16678Republic of Korea
| | - Seung Jin Jeong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
- Present address:
Samsung Electronics129, Samsung‐ro, Yeongtong‐guSuwon16677Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - WooChul Jung
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
26
|
Kim H, Jan A, Kwon DH, Ji HI, Yoon KJ, Lee JH, Jun Y, Son JW, Yang S. Exsolution of Ru Nanoparticles on BaCe 0.9 Y 0.1 O 3-δ Modifying Geometry and Electronic Structure of Ru for Ammonia Synthesis Reaction Under Mild Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205424. [PMID: 36464649 DOI: 10.1002/smll.202205424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Green ammonia is an efficient, carbon-free energy carrier and storage medium. The ammonia synthesis using green hydrogen requires an active catalyst that operates under mild conditions. The catalytic activity can be promoted by controlling the geometry and electronic structure of the active species. An exsolution process is implemented to improve catalytic activity by modulating the geometry and electronic structure of Ru. Ru nanoparticles exsolved on a BaCe0.9 Y0.1 O3-δ support exhibit uniform size distribution, 5.03 ± 0.91 nm, and exhibited one of the highest activities, 387.31 mmolNH3 gRu -1 h-1 (0.1 MPa and 450 °C). The role of the exsolution and BaCe0.9 Y0.1 O3-δ support is studied by comparing the catalyst with control samples and in-depth characterizations. The optimal nanoparticle size is maintained during the reaction, as the Ru nanoparticles prepared by exsolution are well-anchored to the support with in-plane epitaxy. The electronic structure of Ru is modified by unexpected in situ Ba promoter accumulation around the base of the Ru nanoparticles.
Collapse
Affiliation(s)
- Hayoung Kim
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Asif Jan
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), KIST Campus, Seoul, 02792, Republic of Korea
| | - Deok-Hwang Kwon
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ho-Il Ji
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), KIST Campus, Seoul, 02792, Republic of Korea
| | - Kyung Joong Yoon
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Seoul, 02792, Republic of Korea
| | - Jong-Ho Lee
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), KIST Campus, Seoul, 02792, Republic of Korea
| | - Yongseok Jun
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Won Son
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Sungeun Yang
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), KIST Campus, Seoul, 02792, Republic of Korea
| |
Collapse
|
27
|
Rudolph B, Tsiotsias AI, Ehrhardt B, Dolcet P, Gross S, Haas S, Charisou ND, Goula MA, Mascotto S. Nanoparticle Exsolution from Nanoporous Perovskites for Highly Active and Stable Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205890. [PMID: 36683242 PMCID: PMC9951582 DOI: 10.1002/advs.202205890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Nanoporosity is clearly beneficial for the performance of heterogeneous catalysts. Although exsolution is a modern method to design innovative catalysts, thus far it is predominantly studied for sintered matrices. A quantitative description of the exsolution of Ni nanoparticles from nanoporous perovskite oxides and their effective application in the biogas dry reforming is here presented. The exsolution process is studied between 500 and 900 °C in nanoporous and sintered La0.52 Sr0.28 Ti0.94 Ni0.06 O3±δ . Using temperature-programmed reduction (TPR) and X-ray absorption spectroscopy (XAS), it is shown that the faster and larger oxygen release in the nanoporous material is responsible for twice as high Ni reduction than in the sintered system. For the nanoporous material, the nanoparticle formation mechanism, studied by in situ TEM and small-angle X-ray scattering (SAXS), follows the classical nucleation theory, while on sintered systems also small endogenous nanoparticles form despite the low Ni concentration. Biogas dry reforming tests demonstrate that nanoporous exsolved catalysts are up to 18 times more active than sintered ones with 90% of CO2 conversion at 800 °C. Time-on-stream tests exhibit superior long-term stability (only 3% activity loss in 8 h) and full regenerability (over three cycles) of the nanoporous exsolved materials in comparison to a commercial Ni/Al2 O3 catalyst.
Collapse
Affiliation(s)
- Benjamin Rudolph
- Institut für Anorganische und Angewandte ChemieUniversität HamburgMartin‐Luther‐King‐Platz, 620146HamburgGermany
| | | | - Benedikt Ehrhardt
- Institut für Anorganische und Angewandte ChemieUniversität HamburgMartin‐Luther‐King‐Platz, 620146HamburgGermany
| | - Paolo Dolcet
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstrasse 2076133KarlsruheGermany
| | - Silvia Gross
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstrasse 2076133KarlsruheGermany
- Dipartimento di Scienze ChimicheUniversità degli Studi di Padovavia Marzolo 1Padova35131Italy
| | - Sylvio Haas
- Deutsches Elektronen Synchrotron (DESY)Notkestr. 8522607HamburgGermany
| | - Nikolaos D. Charisou
- Department of Chemical EngineeringUniversity of Western MacedoniaKoilaKozani50100Greece
| | - Maria A. Goula
- Department of Chemical EngineeringUniversity of Western MacedoniaKoilaKozani50100Greece
| | - Simone Mascotto
- Institut für Anorganische und Angewandte ChemieUniversität HamburgMartin‐Luther‐King‐Platz, 620146HamburgGermany
| |
Collapse
|
28
|
Xu M, Liu C, Naden AB, Früchtl H, Bühl M, Irvine JTS. Electrochemical Activation Applied to Perovskite Titanate Fibers to Yield Supported Alloy Nanoparticles for Electrocatalytic Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204682. [PMID: 36372544 DOI: 10.1002/smll.202204682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Active bi-metallic nanoparticles are of key importance in catalysis and renewable energy. Here, the in situ formation of bi-metallic nanoparticles is investigated by exsolution on 200 nm diameter perovskite fibers. The B-site co-doped perovskite fibers display a high degree of exsolution, decorated with NiCo or Ni3 Fe bi-metallic nanoparticles with average diameter about 29 and 35 nm, respectively. The perovskite fibers are utilized as cathode materials in pure CO2 electrolysis cells due to their redox stability in the CO/CO2 atmosphere. After in situ electrochemical switching, the nanoparticles exsolved from the perovskite fiber demonstrate an enhanced performance in pure CO2 electrolysis. At 900 °C, the current density of solid oxide electrolysis cell (SOEC) with 200 µm YSZ electrolyte supported NiFe doped perovskite fiber anode reaches 0.75 Acm-2 at 1.6 V superior to the NiCo doped perovskite fiber anode (about 1.5 times) in pure CO2 . According to DFT calculations (PBE-D3 level) the superior CO2 conversion on NiFe compared to NiCo bi-metallic species is related to an enhanced driving force for C-O cleavage under formation of CO chemisorbed on the nanoparticle and a reduced binding energy of CO required to release this product.
Collapse
Affiliation(s)
- Min Xu
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Chencheng Liu
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Aaron B Naden
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Herbert Früchtl
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Michael Bühl
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - John T S Irvine
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
29
|
Kim JK, Kim S, Kim S, Kim HJ, Kim K, Jung W, Han JW. Dynamic Surface Evolution of Metal Oxides for Autonomous Adaptation to Catalytic Reaction Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203370. [PMID: 35738568 DOI: 10.1002/adma.202203370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Metal oxides possessing distinctive physical/chemical properties due to different crystal structures and stoichiometries play a pivotal role in numerous current technologies, especially heterogeneous catalysis for production/conversion of high-valued chemicals and energy. To date, many researchers have investigated the effect of the structure and composition of these materials on their reactivity to various chemical and electrochemical reactions. However, metal oxide surfaces evolve from their initial form under dynamic reaction conditions due to the autonomous behaviors of the constituent atoms to adapt to the surrounding environment. Such nanoscale surface phenomena complicate reaction mechanisms and material properties, interrupting the clarification of the origin of functionality variations in reaction environments. In this review, the current findings on the spontaneous surface reorganization of metal oxides during reactions are categorized into three types: 1) the appearance of nano-sized second phase from oxides, 2) the (partial) encapsulation of oxide atoms toward supported metal surfaces, and 3) the oxide surface reconstruction with selective cation leaching in aqueous solution. Then their effects on each reaction are summarized in terms of activity and stability, providing novel insight for those who design metal-oxide-based catalytic materials.
Collapse
Affiliation(s)
- Jun Kyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sangwoo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seunghyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyung Jun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, South Korea
| | - Kyeounghak Kim
- Department of Chemical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, South Korea
| |
Collapse
|
30
|
Yang Y, Wang S, Tu X, Hu Z, Zhu Y, Guo H, Li Z, Zhang L, Peng M, Jia L, Yang M, Yang G, Qiao X, Sun J, Liang X, Zhang Z, Zhu Y, Shi L, Jiang C, Zhao Y, Li J, Shao Z, Zhang X, Sun Y. Atomic cerium modulated palladium nanoclusters exsolved ferrite catalysts for lean methane conversion. EXPLORATION (BEIJING, CHINA) 2022; 2:20220060. [PMID: 37324800 PMCID: PMC10190994 DOI: 10.1002/exp.20220060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/31/2022] [Indexed: 06/17/2023]
Abstract
The active and stable palladium (Pd) based catalysts for CH4 conversion are of great environmental and industrial significance. Herein, we employed N2 as an optimal activation agent to develop a Pd nanocluster exsolved Ce-incorporated perovskite ferrite catalyst toward lean methane oxidation. Replacing the traditional initiator of H2, the N2 was found as an effective driving force to selectively touch off the surface exsolution of Pd nanocluster from perovskite framework without deteriorating the overall material robustness. The catalyst showed an outstanding T50 (temperature of 50% conversion) plummeting down to 350°C, outperforming the pristine and H2-activated counterparts. Further, the combined theoretical and experimental results also deciphered the crucial role that the atomically dispersed Ce ions played in both construction of active sites and CH4 conversion. The isolated Ce located at the A-site of perovskite framework facilitated the thermodynamic and kinetics of the Pd exsolution process, lowering its formation temperature and promoting its quantity. Moreover, the incorporation of Ce lowered the energy barrier for cleavage of C─H bond, and was dedicated to the preservation of highly reactive PdOx moieties during stability measurement. This work successfully ventures uncharted territory of in situ exsolution to provide a new design thinking for a highly performed catalytic interface.
Collapse
Affiliation(s)
| | - Si Wang
- Beijing State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Xin Tu
- Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of SolidsDresdenGermany
| | - Yinlong Zhu
- Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjingChina
| | | | - Zhishan Li
- College of EnergyXiamen UniversityXiamenChina
| | - Li Zhang
- College of EnergyXiamen UniversityXiamenChina
| | - Meilan Peng
- College of EnergyXiamen UniversityXiamenChina
| | - Lichao Jia
- School of Materials Science and Engineering, State Key Lab of Material Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Meiting Yang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Guangming Yang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Xurong Qiao
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'anChina
| | - Jiahui Sun
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'anChina
| | - Xiaolu Liang
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'anChina
| | - Zhen Zhang
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'anChina
| | - Yanru Zhu
- Beijing State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Lei Shi
- School of Chemical EngineeringDalian University of TechnologyDalianChina
| | | | - Yingru Zhao
- College of EnergyXiamen UniversityXiamenChina
| | - Jianhui Li
- National Engineering Laboratory for Green Chemical Productions of Alcohols‐Ethers‐Esters, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Zongping Shao
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Xin Zhang
- Beijing State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Yifei Sun
- Beijing State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Physical Chemistry of Solid SurfaceXiamen UniversityXiamenChina
- Shenzhen Research Institute of Xiamen UniversityShenzhenGuangdongChina
| |
Collapse
|
31
|
Shin E, Kim DH, Cha JH, Yun S, Shin H, Ahn J, Jang JS, Baek JW, Park C, Ko J, Park S, Choi SY, Kim ID. Ultrafast Ambient-Air Exsolution on Metal Oxide via Momentary Photothermal Effect. ACS NANO 2022; 16:18133-18142. [PMID: 36108309 DOI: 10.1021/acsnano.2c05128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The process of exsolution for the synthesis of strongly anchored metal nanoparticles (NPs) on host oxide lattices has been proposed as a promising strategy for designing robust catalyst-support composite systems. However, because conventional exsolution processes occur in harsh reducing environments at high temperatures for long periods of time, the choice of support materials and dopant metals are limited to those with inherently high thermal and chemical stability. Herein, we report the exsolution of a series of noble metal catalysts (Pt, Rh, and Ir) from metal oxide nanofibers (WO3 NFs) supports in an entirely ambient environment induced by intense pulsed light (IPL)-derived momentary photothermal treatment (>1000 °C). Since the exsolution process spans an extremely short period of time (<20 ms), unwanted structural artifacts such as decreased surface area and phase transition of the support materials are effectively suppressed. At the same time, exsolved NPs (<5 nm) with uniform size distributions could successfully be formed. To prove the practical utility of exsolved catalytic NPs functionalized on WO3 NFs, the chemiresistive gas sensing characteristics of exsolved Pt-decorated WO3 NFs were analyzed, exhibiting high durability (>200 cyclic exposures), enhanced response (Rair/Rgas > 800 @ 1 ppm/350 °C), and selectivity toward H2S target gas. Altogether, we successfully demonstrated that ultrafast exsolution within a few milliseconds could be induced in ambient conditions using the IPL-derived momentary photothermal treatment and contributed to expanding the practical viability of the exsolution-based synthetic approaches for the production of highly stable catalyst systems.
Collapse
Affiliation(s)
- Euichul Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus and Air-Quality Control, KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus and Air-Quality Control, KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Jun-Hwe Cha
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Center for Advanced Materials Discovery towards 3D Displays, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Seolwon Yun
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Center for Advanced Materials Discovery towards 3D Displays, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus and Air-Quality Control, KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus and Air-Quality Control, KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Ji-Soo Jang
- Electronic Materials Center, Korea Institute of Science and Technology, Seoul02792, Republic of Korea
| | - Jong Won Baek
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus and Air-Quality Control, KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus and Air-Quality Control, KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Jaehyun Ko
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus and Air-Quality Control, KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Seyeon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus and Air-Quality Control, KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Sung-Yool Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Center for Advanced Materials Discovery towards 3D Displays, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus and Air-Quality Control, KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| |
Collapse
|
32
|
Li Y, Liu F, Chen Z, Shi L, Zhang Z, Gong Y, Zhang Y, Tian X, Zhang Y, Qiu X, Ding X, Bai X, Jiang H, Zhu Y, Zhu J. Perovskite-Socketed Sub-3 nm Copper for Enhanced CO 2 Electroreduction to C 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206002. [PMID: 36070620 DOI: 10.1002/adma.202206002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Indexed: 06/15/2023]
Abstract
In situ socketing metal nanoparticles onto perovskite oxides has shown great potential in heterogeneous catalysis, but its employment in boosting ambient CO2 electroreduction (CER) is unexplored. Here, a CER catalyst of perovskite-socketed sub-3 nm Cu equipped with strong metal-support interactions (SMSIs) is constructed to promote efficient and stable CO2 -to-C2+ conversion. For such a catalyst, plentiful sub-3 nm ellipsoid Cu particles are homogeneously and epitaxially anchored on the perovskite backbones, with concomitant creation of significant SMSIs. These SMSIs are able to not only modulate electronic structure of active Cu and facilitate adsorption/activation of key intermediates, but also to strengthen perovskite-Cu adhesion and intensify resistance to structural degradation. Beneficial from these advantageous merits, when evaluated in CER, it performs comparably to or better than most reported Cu-based heteronanostructures. Relative to a physical-mixture counterpart, it features marked improvements (up to 6.2 folds) in activity and selectivity for C2+ , together with greatly boosted stability (>80 h). This work gives a new avenue to rationally design more advanced Cu-based heteronanostructures for CER.
Collapse
Affiliation(s)
- Yuxi Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zitao Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Shi
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenbao Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xuezeng Tian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoyu Qiu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Heqing Jiang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
33
|
Tang Y, Wang H, Wang R, Liu Q, Yan Z, Xu L, Liu X. Synergistically Promoting Coking Resistance of a La 0.4Sr 0.4Ti 0.85Ni 0.15O 3-δ Anode by Ru-Doping-Induced Active Twin Defects and Highly Dispersed Ni Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44002-44014. [PMID: 36106728 DOI: 10.1021/acsami.2c15337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of anodes with highly efficient electrochemical catalysis and good durability is crucial for solid oxide fuel cells (SOFCs). This paper reports a superior Ru-doped La0.4Sr0.4Ti0.85Ni0.15O3-δ (L0.4STN) anode material with excellent catalytic activity and good stability. The doping of Ru can inhibit the agglomeration of in situ-exsolved Ni nanoparticles on the surface and induce the formation of abundant multiple-twinned defects in the perovskite matrix, which significantly increase the concentration of oxygen vacancies. The reduced L0.4STRN (R-L0.4STRN) anode shows an area-specific resistance (ASR) of 0.067 Ω cm2 at 800 °C, which is only about one-third of that of stochiometric R-L0.6STN (0.212 Ω cm2). A single cell with the R-L0.4STRN anode shows excellent stability (∼50 h at 650 °C) in both H2 and CH4. Furthermore, R-L0.4STRN exhibits outstanding resistance to carbon deposition, which can be attributed to the synergistic effect of highly dispersed Ni nanoparticles and active twinned defects induced by Ru doping.
Collapse
Affiliation(s)
- Yawei Tang
- State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Haocong Wang
- State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Ruichen Wang
- University of Science and Technology of China, Hefei 230026, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China
| | - Qingshi Liu
- State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zixiang Yan
- State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lanlan Xu
- State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaojuan Liu
- State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China
| |
Collapse
|
34
|
Kim DH, Youn JR, Seo JC, Kim SB, Kim MJ, Lee K. One-pot synthesis of NiCo/MgAl2O4 catalyst for high coke-resistance in steam methane reforming: Optimization of Ni/Co ratio. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Oh J, Joo S, Lim C, Kim HJ, Ciucci F, Wang J, Han JW, Kim G. Precise Modulation of Triple-Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry Reforming of Methane under a Dilution-Free System. Angew Chem Int Ed Engl 2022; 61:e202204990. [PMID: 35638132 PMCID: PMC9542147 DOI: 10.1002/anie.202204990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Dry reforming of methane (DRM) has been emerging as a viable solution to achieving carbon neutrality enhanced by the Paris Agreement as it converts the greenhouse gases of CO2 and CH4 into industrially useful syngas. However, there have been limited studies on the DRM catalyst under mild operating conditions with a high dilution gas ratio due to their deactivation from carbon coking and metal sintering. Herein, we apply the triple-phase boundary (TPB) concept to DRM catalyst via exsolution phenomenon that can secure elongated TPB by controlling the Fe-doping ratio in perovskite oxide. Remarkably, the exsolved catalyst with prolongated TPB shows exceptional CO2 and CH4 conversion rates of 95.9 % and 91.6 %, respectively, stable for 1000 hours under a dilution-free system. DFT calculations confirm that the Lewis acid of support and Lewis base of metal at the TPB promote the adsorption of reactants, resulting in lowering the overall CO2 dissociation and CH4 dehydrogenation energy.
Collapse
Affiliation(s)
- Jinkyung Oh
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Sangwook Joo
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Chaesung Lim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Hyung Jun Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Francesco Ciucci
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong KongChina
| | - Jian‐Qiang Wang
- Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Jeong Woo Han
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Guntae Kim
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| |
Collapse
|
36
|
Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism. Nat Commun 2022; 13:4618. [PMID: 35941119 PMCID: PMC9359987 DOI: 10.1038/s41467-022-32393-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/29/2022] [Indexed: 11/08/2022] Open
Abstract
Perovskites with exsolved nanoparticles (P-eNs) have immense potentials for carbon dioxide (CO2) reduction in solid oxide electrolysis cell. Despite the recent achievements in promoting the B-site cation exsolution for enhanced catalytic activities, the unsatisfactory stability of P-eNs at high voltages greatly impedes their practical applications and this issue has not been elucidated. In this study, we reveal that the formation of B-site vacancies in perovskite scaffold is the major contributor to the degradation of P-eNs; we then address this issue by fine-regulating the B-site supplement of the reduced Sr2Fe1.3Ni0.2Mo0.5O6-δ using foreign Fe sources, achieving a robust perovskite scaffold and prolonged stability performance. Furthermore, the degradation mechanism from the perspective of structure stability of perovskite has also been proposed to understand the origins of performance deterioration. The B-site supplement endows P-eNs with the capability to become appealing electrocatalysts for CO2 reduction and more broadly, for other energy storage and conversion systems.
Collapse
|
37
|
Wang J, Kumar A, Wardini JL, Zhang Z, Zhou H, Crumlin EJ, Sadowski JT, Woller KB, Bowman WJ, LeBeau JM, Yildiz B. Exsolution-Driven Surface Transformation in the Host Oxide. NANO LETTERS 2022; 22:5401-5408. [PMID: 35771744 DOI: 10.1021/acs.nanolett.2c01439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exsolution synthesizes self-assembled metal nanoparticle catalysts via phase precipitation. An overlooked aspect in this method thus far is how exsolution affects the host oxide surface chemistry and structure. Such information is critical as the oxide itself can also contribute to the overall catalytic activity. Combining X-ray and electron probes, we investigated the surface transformation of thin-film SrTi0.65Fe0.35O3 during Fe0 exsolution. We found that exsolution generates a highly Fe-deficient near-surface layer of about 2 nm thick. Moreover, the originally single-crystalline oxide near-surface region became partially polycrystalline after exsolution. Such drastic transformations at the surface of the oxide are important because the exsolution-induced nonstoichiometry and grain boundaries can alter the oxide ion transport and oxygen exchange kinetics and, hence, the catalytic activity toward water splitting or hydrogen oxidation reactions. These findings highlight the need to consider the exsolved oxide surface, in addition to the metal nanoparticles, in designing the exsolved nanocatalysts.
Collapse
Affiliation(s)
- Jiayue Wang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Abinash Kumar
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jenna L Wardini
- Department of Materials Science & Engineering, University of California, Irvine, California 92697, United States
| | - Zhan Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hua Zhou
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jerzy T Sadowski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kevin B Woller
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William J Bowman
- Department of Materials Science & Engineering, University of California, Irvine, California 92697, United States
| | - James M LeBeau
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Kang X, Reinertsen VM, Both KG, Galeckas A, Aarholt T, Prytz Ø, Norby T, Neagu D, Chatzitakis A. Galvanic Restructuring of Exsolved Nanoparticles for Plasmonic and Electrocatalytic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201106. [PMID: 35695331 DOI: 10.1002/smll.202201106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
There is a growing need to control and tune nanoparticles (NPs) to increase their stability and effectiveness, especially for photo- and electrochemical energy conversion applications. Exsolved particles are well anchored and can be re-shaped without changing their initial location and structural arrangement. However, this usually involves lengthy treatments and use of toxic gases. Here, the galvanic replacement/deposition method is used, which is simpler, safer, and leads to a wealth of new hybrid nanostructures with a higher degree of tailorability. The produced NiAu bimetallic nanostructures supported on SrTiO3 display exceptional activity in plasmon-assisted photoelectrochemical (PEC) water oxidation reactions. In situ scanning transmission electron microscopy is used to visualize the structural evolution of the plasmonic bimetallic structures, while theoretical simulations provide mechanistic insight and correlate the surface plasmon resonance effects with structural features and enhanced PEC performance. The versatility of this concept in shifting catalytic modes to the hydrogen evolution reaction is demonstrated by preparing hybrid NiPt bimetallic NPs of low Pt loadings on highly reduced SrTiO3 supports. This powerful methodology enables the design of supported bimetallic nanomaterials with tunable morphology and catalytic functionalities through minimal engineering.
Collapse
Affiliation(s)
- Xiaolan Kang
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Gaustadalléen 21, Oslo, NO-0349, Norway
| | - Vilde Mari Reinertsen
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, Oslo, NO-0316, Norway
| | - Kevin Gregor Both
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Gaustadalléen 21, Oslo, NO-0349, Norway
| | - Augustinas Galeckas
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, Oslo, NO-0316, Norway
| | - Thomas Aarholt
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, Oslo, NO-0316, Norway
| | - Øystein Prytz
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, Oslo, NO-0316, Norway
| | - Truls Norby
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Gaustadalléen 21, Oslo, NO-0349, Norway
| | - Dragos Neagu
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose St, Glasgow, G1 1XJ, UK
| | - Athanasios Chatzitakis
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Gaustadalléen 21, Oslo, NO-0349, Norway
| |
Collapse
|
39
|
Park S, Oh D, Ahn J, Kim JK, Kim DH, Kim S, Park C, Jung W, Kim ID. Promoting Ex-Solution from Metal-Organic-Framework-Mediated Oxide Scaffolds for Highly Active and Robust Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201109. [PMID: 35502659 DOI: 10.1002/adma.202201109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Ex-solution catalysts, in which a host oxide is decorated with confined metallic nanoparticles, have exhibited breakthrough activity in various catalytic reactions. However, catalysts prepared by conventional ex-solution processes are limited by the low surface area of host oxides, the limited solubility of dopants, and the incomplete conversion of doped cations into metal catalysts. Here, the design of the host oxide structure is reconceptualized using a metal-organic framework (MOF) as an oxide precursor that can absorb a large quantity of ions while also promoting ex-solution at low temperatures (400-500 °C). The MOF-derived metal oxide host can readily incorporate metal cations, from which catalytic nanoparticles can be uniformly ex-solved owing to the short diffusion length in the nano-sized oxides. The distinct ex-solution behaviors of Pt, Pd, and Rh, and their bimetallic combinations are investigated. The MOF-driven mesoporous ZnO particles functionalized with PdPt catalysts ex-solved at 500 °C show benchmark-level of acetone oxidation activity as well as acetone-sensing characteristics by accelerating both oxygen chemisorption and acetone dissociation. Their findings provide a new route for the preparation of highly active catalysts by engineering the architecture and composition of the host oxide to facilitate the ex-solution process rationally.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jun Kyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seunghyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
40
|
Tsiotsias AI, Ehrhardt B, Rudolph B, Nodari L, Kim S, Jung W, Charisiou ND, Goula MA, Mascotto S. Bimetallic Exsolved Heterostructures of Controlled Composition with Tunable Catalytic Properties. ACS NANO 2022; 16:8904-8916. [PMID: 35709497 DOI: 10.1021/acsnano.1c11111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, we show how the composition of bimetallic Fe-Ni exsolution can be controlled by the nature and concentration of oxygen vacancies in the parental matrix and how this is used to modify the performance of CO2-assisted ethane conversion. Mesoporous A-site-deficient La0.4Sr0.6-αTi0.6Fe0.35Ni0.05O3±δ (0 ≤ α ≤ 0.2) perovskites with substantial specific surface area (>40 m2/g) enabled fast exsolution kinetics (T < 500 °C, t < 1 h) of bimetallic Fe-Ni nanoparticles of increasing size (3-10 nm). Through the application of a multitechnique approach we found that the A-site deficiency determined the concentration of oxygen vacancies associated with iron, which controlled the Fe reduction. Instead of homogeneous bimetallic nanoparticles, the increasing Fe fraction from 37 to 57% led to the emergence of bimodal Fe/Ni3Fe systems. Catalytic tests showed superior stability of our catalysts with respect to commercial Ni/Al2O3. Ethane reforming was found to be the favored pathway, but an increase in selectivity toward ethane dehydrogenation occurred for the systems with a low metallic Fe fraction. The chance to control the reduction and growth processes of bimetallic exsolution offers interesting prospects for the design of advanced catalysts based on bimodal nanoparticle heterostructures.
Collapse
Affiliation(s)
- Anastasios I Tsiotsias
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
- Department of Chemical Engineering, University of Western Macedonia, 50100 Koila, Kozani, Greece
| | - Benedikt Ehrhardt
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Benjamin Rudolph
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Luca Nodari
- Department of Chemical Science, University of Padua, Via F. Marzolo, 1, 35122 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council. C.so Stati Uniti 4, 35127 Padova, Italy
| | - Seunghyun Kim
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nikolaos D Charisiou
- Department of Chemical Engineering, University of Western Macedonia, 50100 Koila, Kozani, Greece
| | - Maria A Goula
- Department of Chemical Engineering, University of Western Macedonia, 50100 Koila, Kozani, Greece
| | - Simone Mascotto
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
41
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
42
|
Park KS, Kwon JH, Yu JS, Jeong SY, Jo DH, Chung CH, Bae JW. Catalytically stable monodispersed multi-core Ni-Co nanoparticles encapsulated with SiO2 shells for dry reforming of CH4 with CO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Oh J, Joo S, Lim C, Kim HJ, Ciucci F, Wang JQ, Han JW, Kim G. Precise Modulation of Triple‐Phase Boundaries towards Highly Functional Exsolved Catalyst for Dry Reforming of Methane under A Dilution‐Free System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinkyung Oh
- UNIST: Ulsan National Institute of Science and Technology Department of Energy Engineering KOREA, REPUBLIC OF
| | - Sangwook Joo
- UNIST: Ulsan National Institute of Science and Technology Department of Energy Engineering KOREA, REPUBLIC OF
| | - Chaesung Lim
- POSTECH: Pohang University of Science and Technology Department of Chemical Engineering KOREA, REPUBLIC OF
| | - Hyung Jun Kim
- POSTECH: Pohang University of Science and Technology Department of Chemical Engineering KOREA, REPUBLIC OF
| | - Francesco Ciucci
- The Hong Kong University of Science and Technology Department of Chemical and Biological Engineering HONG KONG
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Key Laboratory of Interfacial Physics and Technology CHINA
| | - Jeong Woo Han
- POSTECH: Pohang University of Science and Technology Department of Chemical Engineering KOREA, REPUBLIC OF
| | - Guntae Kim
- Ulsan National Institute of Science and Technology Department of Energy Engineering 701-8 Natural & Sci. Bldg.50 UNIST-Gil, Eonyang-eupUlju-gun 689-798 Ulsan KOREA, REPUBLIC OF
| |
Collapse
|
44
|
Kersell H, Weber ML, Falling L, Lu Q, Baeumer C, Shirato N, Rose V, Lenser C, Gunkel F, Nemšák S. Evolution of surface and sub-surface morphology and chemical state of exsolved Ni nanoparticles. Faraday Discuss 2022; 236:141-156. [PMID: 35543196 DOI: 10.1039/d1fd00123j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticle formation by dopant exsolution (migration) from bulk host lattices is a promising approach to generate highly stable nanoparticles with tunable size, shape, and distribution. We investigated Ni dopant migration from strontium titanate (STO) lattices, forming metallic Ni nanoparticles at STO surfaces. Ex situ scanning probe measurements confirmed the presence of nanoparticles at the H2 treated surface. In situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) revealed reduction from Ni2+ to Ni0 as Ni dopants migrated to the surface during heating treatments in H2. During Ni migration and reduction, the Sr and Ti chemical states were mostly unchanged, indicating the selective reduction of Ni during treatment. At the same time, we used in situ ambient pressure grazing incidence X-ray scattering (GIXS) to monitor the particle morphology. As Ni migrated to the surface, it nucleated and grew into compressed spheroidal nanoparticles partially embedded in the STO perovskite surface. These findings provide a detailed picture of the evolution of the nanoparticle surface and subsurface chemical state and morphology as the nanoparticles grow beyond the initial nucleation and growth stages.
Collapse
Affiliation(s)
- Heath Kersell
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
| | - Moritz L Weber
- Peter Gruenberg Institute (PGI-7) and JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute of Energy and Climate Research (IEK-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lorenz Falling
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
| | - Qiyang Lu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
| | - Christoph Baeumer
- MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, 7500 AE Enschede, The Netherlands
| | - Nozomi Shirato
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - Volker Rose
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois, 60439, USA.,X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - Christian Lenser
- Institute of Energy and Climate Research (IEK-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Felix Gunkel
- Peter Gruenberg Institute (PGI-7) and JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
| |
Collapse
|
45
|
Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nat Commun 2022; 13:2207. [PMID: 35459865 PMCID: PMC9033792 DOI: 10.1038/s41467-022-29866-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Reversible protonic ceramic electrochemical cells (R-PCECs) are ideally suited for efficient energy storage and conversion; however, one of the limiting factors to high performance is the poor stability and insufficient electrocatalytic activity for oxygen reduction and evolution of the air electrode exposed to the high concentration of steam. Here we report our findings in enhancing the electrochemical activity and durability of a perovskite-type air electrode, Ba0.9Co0.7Fe0.2Nb0.1O3-δ (BCFN), via a water-promoted surface restructuring process. Under properly-controlled operating conditions, the BCFN electrode is naturally restructured to an Nb-rich BCFN electrode covered with Nb-deficient BCFN nanoparticles. When used as the air electrode for a fuel-electrode-supported R-PCEC, good performances are demonstrated at 650 °C, achieving a peak power density of 1.70 W cm−2 in the fuel cell mode and a current density of 2.8 A cm−2 at 1.3 V in the electrolysis mode while maintaining reasonable Faradaic efficiencies and promising durability. One limiting factor to the high-performing reversible protonic ceramic electrochemical cells is the poor stability and electrocatalytic activity of air electrodes. Here the authors report a water-promoted surface restructuring process to enhance the performance of Ba0.9Co0.7Fe0.2Nb0.1O3-δ air electrode.
Collapse
|
46
|
Li Z, Yang Y, Tian J, Li J, Chen G, Zhou L, Sun Y, Qiu Y. Selective Photocatalytic Reduction of CO 2 to Syngas Over Tunable Metal-Perovskite Interface. CHEMSUSCHEM 2022; 15:e202102729. [PMID: 35102710 DOI: 10.1002/cssc.202102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The extensive emission of CO2 results in critical environmental issues, such as global warming. Photocatalytic CO2 conversion is a meaningful route to convert CO2 into useful chemicals. However, the highly selective reduction of CO2 with the avoidance of hydrogen evolution is still challenging. Herein, the photocatalytic reduction CO2 to synthesis gas (syngas) was achieved on a metal Ag socketed perovskite LaFeO3 (LFO) catalytic interface prepared by an in-situ exsolution method. The conduction band of Ag-exsolved LFO is more negative than LFO, benefiting efficient CO2 reduction. By tuning the dopant Ag cation in the lattice to nanoparticles pinned on the surface, the CO formation rate was improved around five-fold from 0.51 to 2.41 μmol g-1 h-1 . Meanwhile, the H2 /CO molar ratio also showed strong dependence on the modality of Ag at the metal-perovskite interface. The design offers a promising pathway for transforming CO2 to valuable chemicals based on efficient photocatalysts design.
Collapse
Affiliation(s)
- Zhang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P.R. China
- College of Energy, Xiamen University, Xiamen, 361005, P.R. China
| | - Yanling Yang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P.R. China
- College of Energy, Xiamen University, Xiamen, 361005, P.R. China
| | - Jinshu Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jianhui Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Gui Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P.R. China
| | - Liujiang Zhou
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yifei Sun
- College of Energy, Xiamen University, Xiamen, 361005, P.R. China
| | - Yongfu Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P.R. China
| |
Collapse
|
47
|
Seo J, Kim S, Jeon S, Kim S, Kim JH, Jung W. Nanoscale interface engineering for solid oxide fuel cells using atomic layer deposition. NANOSCALE ADVANCES 2022; 4:1060-1073. [PMID: 36131774 PMCID: PMC9417260 DOI: 10.1039/d1na00852h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/09/2022] [Indexed: 06/15/2023]
Abstract
Atomic layer deposition (ALD), which is already actively used in the semiconductor industry, has been in the spotlight in various energy fields, such as batteries and fuel cells, given its unique ability to enable the nanoscale deposition of diverse materials with a variety of compositions onto complex 3D structures. In particular, with regard to ceramic fuel cells, ALD has attracted attention because it facilitates the manufacturing of thin and dense electrolytes. Furthermore, recently, electrode surfaces and electrode/electrolyte interface modification are arising as new research strategies to fabricate robust fuel cells. In this mini-review, we present a brief overview of ALD and recent studies that utilize ALD in ceramic fuel cells, such as manufacturing thin film electrolytes, stabilizing electrodes, functionalizing electrodes, and modifying the chemistry of electrode surfaces. We also propose research directions to expand the utility and functionality of the ALD techniques.
Collapse
Affiliation(s)
- Jongsu Seo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Seunghyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - SungHyun Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Suyeon Kim
- Department of Materials Science and Engineering, Hanbat National University Daejeon Republic of Korea
| | - Jeong Hwan Kim
- Department of Materials Science and Engineering, Hanbat National University Daejeon Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| |
Collapse
|
48
|
He S, Zou Y, Chen K, Li N, Li D, Jiang SP. A critical review on nano-structured electrodes of solid oxide cells. Chem Commun (Camb) 2022; 58:10619-10626. [DOI: 10.1039/d2cc03877c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Renewable energies from solar and wind power are playing an ever increasing role in meeting the tremendous global energy demand with substantially reduced carbon emissions, however, their intermittent nature poses...
Collapse
|
49
|
Kim JH, Liu M, Chen Y, Murphy R, Choi Y, Liu Y, Liu M. Understanding the Impact of Sulfur Poisoning on the Methane-Reforming Activity of a Solid Oxide Fuel Cell Anode. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jun Hyuk Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mingfei Liu
- Energy Research & Innovation, Phillips 66 Company, 2331 CityWest Blvd., Houston, Texas 77042, United States
| | - Yu Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan Murphy
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - YongMan Choi
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan
| | - Ying Liu
- Energy Research & Innovation, Phillips 66 Company, 2331 CityWest Blvd., Houston, Texas 77042, United States
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
50
|
Lv H, Lin L, Zhang X, Li R, Song Y, Matsumoto H, Ta N, Zeng C, Fu Q, Wang G, Bao X. Promoting exsolution of RuFe alloy nanoparticles on Sr 2Fe 1.4Ru 0.1Mo 0.5O 6-δ via repeated redox manipulations for CO 2 electrolysis. Nat Commun 2021; 12:5665. [PMID: 34580312 PMCID: PMC8476569 DOI: 10.1038/s41467-021-26001-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
Metal nanoparticles anchored on perovskite through in situ exsolution under reducing atmosphere provide catalytically active metal/oxide interfaces for CO2 electrolysis in solid oxide electrolysis cell. However, there are critical challenges to obtain abundant metal/oxide interfaces due to the sluggish diffusion process of dopant cations inside the bulk perovskite. Herein, we propose a strategy to promote exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6−δ perovskite by enriching the active Ru underneath the perovskite surface via repeated redox manipulations. In situ scanning transmission electron microscopy demonstrates the dynamic structure evolution of Sr2Fe1.4Ru0.1Mo0.5O6−δ perovskite under reducing and oxidizing atmosphere, as well as the facilitated CO2 adsorption at RuFe@Sr2Fe1.4Ru0.1Mo0.5O6−δ interfaces. Solid oxide electrolysis cell with RuFe@Sr2Fe1.4Ru0.1Mo0.5O6−δ interfaces shows over 74.6% enhancement in current density of CO2 electrolysis compared to that with Sr2Fe1.4Ru0.1Mo0.5O6−δ counterpart as well as impressive stability for 1000 h at 1.2 V and 800 °C. Metal nanoparticles anchored on perovskite provide catalytically active interfaces for CO2 electrolysis. The authors promote exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5 O6−δ perovskite by enriching the active Ru underneath the perovskite surface via repeated redox manipulations.
Collapse
Affiliation(s)
- Houfu Lv
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Xiaomin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yuefeng Song
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | | | - Na Ta
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Chaobin Zeng
- Hitachi High-tech (Shanghai) Co., Ltd, Shanghai, P. R. China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|