1
|
Liu ZH, Cai X, Dai HH, Zhao YH, Gao ZW, Yang YF, Liu YZ, Yang M, Li MQ, Li PH, Huang XJ. Highly Stable Solid Contact Calcium Ion-Selective Electrodes: Rapid Ion-Electron Transduction Triggered by Lipophilic Anions Participating in Redox Reactions of Cu nS Nanoflowers. Anal Chem 2024; 96:9069-9077. [PMID: 38749062 DOI: 10.1021/acs.analchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Solid contact (SC) calcium ion-selective electrodes (Ca2+-ISEs) have been widely applied in the analysis of water quality and body fluids by virtue of the unique advantages of easy operation and rapid response. However, the potential drift during the long-term stability test hinders their further practical applications. Designing novel redox SC layers with large capacitance and high hydrophobicity is a promising approach to stabilize the potential stability, meanwhile, exploring the transduction mechanism is also of great guiding significance for the precise design of SC layer materials. Herein, flower-like copper sulfide (CunS-50) composed of nanosheets is meticulously designed as the redox SC layer by modification with the surfactant (CTAB). The CunS-50-based Ca2+-ISE (CunS-50/Ca2+-ISE) demonstrates a near-Nernstian slope of 28.23 mV/dec for Ca2+ in a wide activity linear range of 10-7 to 10-1 M, with a low detection limit of 3.16 × 10-8 M. CunS-50/Ca2+-ISE possesses an extremely low potential drift of only 1.23 ± 0.13 μV/h in the long-term potential stability test. Notably, X-ray absorption fine-structure (XAFS) spectra and electrochemical experiments are adopted to elucidate the transduction mechanism that the lipophilic anion (TFPB-) participates in the redox reaction of CunS-50 at the solid-solid interface of ion-selective membrane (ISM) and redox inorganic SC layer (CunS-50), thereby promoting the generation of free electrons to accelerate ion-electron transduction. This work provides an in-depth comprehension of the transduction mechanism of the potentiometric response and an effective strategy for designing redox materials of ion-electron transduction triggered by lipophilic anions.
Collapse
Affiliation(s)
- Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Hua Dai
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Wei Gao
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Zhi Liu
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Min-Qiang Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Xian F, Jia L, Sugahara Y, Xue H, Yamauchi Y, Sasaki T, Ma R. Constructing Fast Transmembrane Pathways in a Layered Double Hydroxide Nanosheets/Nanoparticles Composite Film for an Inorganic Anion-Exchange Membrane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51212-51221. [PMID: 36322104 DOI: 10.1021/acsami.2c15764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Anion-exchange membranes (AEMs) with high conductivity are crucial for realizing next-generation energy storage and conversion systems in an alkaline environment, promising a huge advantage in cost reduction without using precious platinum group metal catalysts. Layered double hydroxide (LDH) nanosheets, exhibiting a remarkably high hydroxide ion (OH-) conductivity approaching 10-1 S cm-1 along the in-plane direction, may be regarded as an ideal candidate material for the fabrication of inorganic solid AEMs. However, two-dimensional anisotropy results in a substantially low conductivity of 10-6 S cm-1 along the cross-plane direction, which poses a hurdle to achieve fast ion conduction across the membrane comprising restacked nanosheets. In the present work, a composite membrane was prepared based on mixing/assembling micron-sized LDH nanosheets with nanosized LDH platelets (nanoparticles) via a facile vacuum filtration process. The hybridization with nanoparticles could alter the orientation of LDH nanosheets and reduce the restacking order, forming diversified fast ion-conducting pathways and networks in the composite membrane. As a result, the transmembrane conductivity significantly improved up to 1000-fold higher than that composed of restacked nanosheets only, achieving a high conductivity of 10-2 to 10-1 S cm-1 in both in-plane and cross-plane directions.
Collapse
Affiliation(s)
- Fang Xian
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Lulu Jia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yoshiyuki Sugahara
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Tokyo 169-0051, Japan
| | - Hairong Xue
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Takayoshi Sasaki
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
3
|
Liu Y, Du X, Li Y, Bao E, Ren X, Chen H, Tian X, Xu C. Nanosheet-assembled porous MnCo 2O 4.5 microflowers as electrode material for hybrid supercapacitors and lithium-ion batteries. J Colloid Interface Sci 2022; 627:815-826. [PMID: 35901561 DOI: 10.1016/j.jcis.2022.07.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
Herein, the MnCo2O4.5 microflowers (MFs) assembled by two-dimensional (2D) porous nanosheets were prepared through an initial solvothermal reaction with a subsequent annealing process. In this architecture, many interconnected 2D thin nanosheets were self-assembled together to form a 3D hierarchical MF with plenty of open channels. Such structure endows these MnCo2O4.5 MFs with large specific surface area of 156.85 m2/g for energy storage and provides rich ion diffusion pathways for ion transportation, thus the as-prepared MFs can exhibit good overall electrochemical performance in both hybrid supercapacitor (HSC) and lithium-ion battery (LIB). For the utilization in supercapacitor, the MFs deliver a specific capacity of 287.02 C/g at 1 A/g as well as a rate capability with 73.3 % capacity retention at 8 A/g. The energy density of the HSC assembled by MFs and activated carbon can reach up to 30.33 W h kg-1 at 959.35 W kg-1. When applied as the anode for Li-ion battery, a specific capacity of 1340.8 mA h g-1 at 0.1 A/g and cycling performance with low capacity loss of 0.73 mAh/g per cycle after 200 cycles at 0.5 A/g can be achieved. This work uncovers a repeatable and facile synthetic strategy to prepare transition metal oxides with large specific surface area and good overall electrochemical property.
Collapse
Affiliation(s)
- Yafei Liu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Xuming Du
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Enhui Bao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Xianglin Ren
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Huiyu Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Xiaodong Tian
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Chunju Xu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
4
|
Li M, Zhu K, Zhao H, Meng Z, Wang C, Chu PK. Construction of α-MnO 2 on Carbon Fibers Modified with Carbon Nanotubes for Ultrafast Flexible Supercapacitors in Ionic Liquid Electrolytes with Wide Voltage Windows. NANOMATERIALS 2022; 12:nano12122020. [PMID: 35745359 PMCID: PMC9228112 DOI: 10.3390/nano12122020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023]
Abstract
In this study, α-MnO2 and Fe2O3 nanomaterials are prepared on a carbon fiber modified with carbon nanotubes to produce the nonbinder core–shell positive (α-MnO2@CNTs/CC) and negative (Fe2O3@CNTs/CC) electrodes that can be operated in a wide voltage window in ultrafast asymmetrical flexible supercapacitors. MnO2 and Fe2O3 have attracted wide research interests as electrode materials in energy storage applications because of the abundant natural resources, high theoretical specific capacities, environmental friendliness, and low cost. The electrochemical performance of each electrode is assessed in 1 M Na2SO4 and the energy storage properties of the supercapacitors consisting of the two composite electrodes are determined in Na2SO4 and EMImBF4 electrolytes in the 2 V and 4 V windows. The 2 V supercapacitor can withstand a large scanning rate of 5000 mV S−1 without obvious changes in the cyclic voltammetry (CV) curves, besides showing a maximum energy density of 57.29 Wh kg−1 at a power density of 833.35 W kg−1. Furthermore, the supercapacitor retains 87.06% of the capacity after 20,000 galvanostatic charging and discharging (GCD) cycles. The 4 V flexible supercapacitor shows a discharging time of 1260 s and specific capacitance of 124.8 F g−1 at a current of 0.5 mA and retains 87.77% of the initial specific capacitance after 5000 GCD cycles. The mechanical robustness and practicality are demonstrated by physical bending and the powering of LED arrays. In addition, the contributions of the active materials to the capacitive properties and the underlying mechanisms are explored and discussed
Collapse
Affiliation(s)
- Mai Li
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
- Correspondence: (M.L.); (Z.M.)
| | - Kailan Zhu
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
| | - Hanxue Zhao
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science, Donghua University, Shanghai 201620, China
- Correspondence: (M.L.); (Z.M.)
| | - Chunrui Wang
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
| | - Paul K. Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China;
| |
Collapse
|
5
|
Du J, Chen A, Gao X, Hou S, Zhang Y. Silica-Assisted Controlled Engineering of Nitrogen-Doped Carbon Cages with Bulges for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60327-60336. [PMID: 34878767 DOI: 10.1021/acsami.1c16532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The bulge structure of N-doped carbon cages is beneficial to improving the specific surface area and increasing the active sites of a chemical reaction. Therefore, this structure plays a role in increasing capacity in energy storage. However, the precise and most effective method of ensuring the bulge structures is still a challenge. Herein, a silica-assisted method is used to prepare N-doped carbon cages with bulges. The effective assembly of a nitrogen-rich resin and silica precursor is employed to construct the bulge structure on the surface. The reaction temperature of the assembly system and the amount of silica precursor are the key influences on the number and degree of bulges. In contrast to conventional carbon materials that have a smooth surface, the bulge structure allows for exposure and accessibility of the activity sites. Due to the N-doping features, a rich mesoporous structure and controllable bulges, the synergism of the high density, large ion-accessible surface area, and fast charge transfer, lead to high performance under the premise of high rate capability in supercapacitor. This silica-assisted strategy can also work on other preprepared corresponding templates that have a different architecture to prepare core-shell carbon tubes, carbon spheres, and carbon rods with a bulge structure.
Collapse
Affiliation(s)
- Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China
| | - Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China
| | - Senlin Hou
- The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang 050000, China
| | - Yue Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China
| |
Collapse
|
6
|
Ma J, Xia J, Liang Z, Chen X, Du Y, Yan CH. Layered Double Hydroxide Hollowcages with Adjustable Layer Spacing for High Performance Hybrid Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104423. [PMID: 34708548 DOI: 10.1002/smll.202104423] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Layered double hydroxides (LDHs) have been considered as promising electrodes for supercapacitors due to their adjustable composition, designable function and superior high theoretic capacity. However, their experimental specific capacity is significantly lower than the theoretical value due to their small interlayer spacing. Therefore, obtaining large interlayer spacing through the intercalation of large-sized anions is an important means to improve capacity performance. Herein, a metal organic framework derived cobalt-nickel layered double hydroxide hollowcage intercalated with different concentrations of 1,4-benzenedicarboxylic acid (H2 BDC) through in-situ cationic etching and organic ligand intercalation method is designed and fabricated. The superior specific capacity and excellent rate performance are benefit from the large specific surface area of the hollow structure and increasing interlayer spacing of LDH after H2 BDC intercalation. The sample with the largest layer spacing displays a maximum specific capacity of 229 mA h g-1 at 1 A g-1 . In addition, the hybrid supercapacitor assembled from the sample with the largest layer spacing and active carbon electrode has a maximum specific capacity of 158 mA h g-1 at 1 A g-1 ; the energy density is as high as 126.4 W h kg-1 at 800 W kg-1 and good cycle stability.
Collapse
Affiliation(s)
- Jiamin Ma
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jiale Xia
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaoyun Chen
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
7
|
Chen Y, Liang Y, Wang L, Guan M, Zhu Y, Yue X, Huang X, Lu G. Preparation and applications of freestanding Janus nanosheets. NANOSCALE 2021; 13:15151-15176. [PMID: 34486634 DOI: 10.1039/d1nr04284j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the family of Janus nanomaterials, Janus nanosheets possess not only the advantages of Janus nanomaterials, but also the advantages of two-dimensional nanosheets, endowing them with many extraordinary properties. Therefore, Janus nanosheets have great potential in the fields of interfacial engineering, catalysis, and molecular recognition. This review summarizes and discusses the recent advances in both the preparation and applications of freestanding Janus nanosheets. After a short introduction to different types of Janus nanosheets, a variety of methods for preparing freestanding Janus nanosheets are introduced, including the surface reaction, interface reaction, emulsion reaction, self-assembly, and stripping of non-Janus nanosheets, as well as selective grafting of existing Janus nanosheets. Then, the wide applications of Janus nanosheets in the fields of emulsification, catalysis, polymer reinforcement, nanomotors, and molecular recognition are summarized in detail. Finally, a discussion on the remaining challenges and future perspectives in this field is included. This review will not only deepen the understanding of Janus nanosheets, but also benefit the designs and fabrications of extraordinary and multi-functional Janus nanosheets.
Collapse
Affiliation(s)
- Yaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Li Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiaoping Yue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|