1
|
Rusakov K, Demianiuk S, Jalonicka E, Hanczyc P. Cavity Lasing Characteristics of Thioflavin T and Thioflavin X in Different Solvents and Their Interaction with DNA for the Controlled Reduction of a Light Amplification Threshold in Solid-State Biofilms. ACS APPLIED OPTICAL MATERIALS 2023; 1:1922-1929. [PMID: 38149104 PMCID: PMC10749465 DOI: 10.1021/acsaom.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 12/28/2023]
Abstract
The lasing characteristics of Thioflavin T (ThT) and Thioflavin X (ThX) dyes were investigated in solvents with increasing viscosity: water, ethanol, butanol, ethylene glycol, and glycerol and three forms of DNA (double-helix natural, fragmented, and aggregated). The results identified that lasing thresholds and photostability depend on three critical factors: the solvation shell surrounding dye molecules, the organization of their dipole moments, which is driven by the DNA structure, and the molecules diffusion coefficient in the excitation focal spot. The research highlights that dye doped to DNA accumulated in binding sites fosters long-range dye orientation, facilitating a marked reduction of lasing thresholds in the liquid phase as well as amplified spontaneous emission (ASE) thresholds in the solid state. Leveraging insights from lasing characteristics obtained in liquid, ASE in the solid state was optimized in a controlled way by changing the parameters influencing the DNA structure, i.e., magnesium salt addition, heating, and sonication. The modifications led to a large decrease in the ASE thresholds in the dye-doped DNA films. It was shown that the examination of lasing in cavities can be useful for preparing optical materials with improved architectures and functionalities for solid-state lasers.
Collapse
Affiliation(s)
- K. Rusakov
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Faculty
of Construction and Environmental Engineering, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - S. Demianiuk
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - E. Jalonicka
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - P. Hanczyc
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Shan H, Dai H, Chen X. Monitoring Various Bioactivities at the Molecular, Cellular, Tissue, and Organism Levels via Biological Lasers. SENSORS (BASEL, SWITZERLAND) 2022; 22:3149. [PMID: 35590841 PMCID: PMC9102053 DOI: 10.3390/s22093149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The laser is considered one of the greatest inventions of the 20th century. Biolasers employ high signal-to-noise ratio lasing emission rather than regular fluorescence as the sensing signal, directional out-coupling of lasing and excellent biocompatibility. Meanwhile, biolasers can also be micro-sized or smaller lasers with embedded/integrated biological materials. This article presents the progress in biolasers, focusing on the work done over the past years, including the molecular, cellular, tissue, and organism levels. Furthermore, biolasers have been utilized and explored for broad applications in biosensing, labeling, tracking, bioimaging, and biomedical development due to a number of unique advantages. Finally, we provide the possible directions of biolasers and their applications in the future.
Collapse
Affiliation(s)
- Hongrui Shan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Hailang Dai
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
3
|
Gong X, Qiao Z, Liao Y, Zhu S, Shi L, Kim M, Chen YC. Enzyme-Programmable Microgel Lasers for Information Encoding and Anti-Counterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107809. [PMID: 34918404 DOI: 10.1002/adma.202107809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing.
Collapse
Affiliation(s)
- Xuerui Gong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhen Qiao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yikai Liao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Song Zhu
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lei Shi
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Munho Kim
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
4
|
Qiao Z, Xu H, Zhang N, Gong X, Gong C, Yang G, Chew SY, Huang C, Chen Y. Cellular Features Revealed by Transverse Laser Modes in Frequency Domain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103550. [PMID: 34841743 PMCID: PMC8728842 DOI: 10.1002/advs.202103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Biological lasers which utilize Fabry-Pérot (FP) cavities have attracted tremendous interest due to their potential in amplifying subtle biological changes. Transverse laser modes generated from cells serve as distinct fingerprints of individual cells; however, most lasing signals lack the ability to provide key information about the cell due to high complexity of transverse modes. The missing key, therefore, hinders it from practical applications in biomedicine. This study reveals the key mechanism governing the frequency distributions of transverse modes in cellular lasers. Spatial information of cells including curvature can be interpreted through spectral information of transverse modes by means of hyperspectral imaging. Theoretical studies are conducted to explore the correlation between the cross-sectional morphology of a cell and lasing frequencies of transverse modes. Experimentally, the spectral characteristics of transverse modes are investigated in live and fixed cells with different morphological features. By extracting laser modes in frequency domain, the proposed concept is applied for studying cell adhesion process and cell classification from rat cortices. This study expands a new analytical dimension of cell lasers, opening an avenue for subcellular analysis in biophotonic applications.
Collapse
Affiliation(s)
- Zhen Qiao
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang Ave.Singapore639798Singapore
| | - Hongmei Xu
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang Ave.Singapore639798Singapore
| | - Na Zhang
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Xuerui Gong
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang Ave.Singapore639798Singapore
| | - Chaoyang Gong
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang Ave.Singapore639798Singapore
| | - Guang Yang
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang Ave.Singapore639798Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
- Lee Kong Chian School of Medicine11 Mandalay RoadSingapore308232Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang Ave.Singapore639798Singapore
| | - Yu‐Cheng Chen
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang Ave.Singapore639798Singapore
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| |
Collapse
|
5
|
Jonáš A, Pilát Z, Ježek J, Bernatová S, Jedlička P, Aas M, Kiraz A, Zemánek P. Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50657-50667. [PMID: 34674523 DOI: 10.1021/acsami.1c11936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile integrated sources of coherent light and ultra-sensitive environmental sensors has played a prominent role. Here, we study transportable optofluidic microlasers reversibly tunable by an external electric field, which are based on fluorophore-doped emulsion droplets of radial nematic liquid crystals manipulated by optical tweezers in microfluidic chips with embedded liquid electrodes. Full transparency of the electrodes formed by a concentrated electrolyte solution allows for applying an electric field to the optically trapped droplets without undesired heating caused by light absorption. Taking advantage of independent, precise control over the electric and thermal stimulation of the lasing liquid crystal droplets, we characterize their spectral tuning response at various optical trapping powers and study their relaxation upon a sudden decrease in the trapping power. Finally, we demonstrate that sufficiently strong applied electric fields can induce fully reversible phase transitions in the trapped droplets even below the bulk melting temperature of the used liquid crystal. Our observations indicate viability of creating electrically tunable, optically transported microlasers that can be prepared on-demand and operated within microfluidic chips to implement integrated microphotonic or sensing systems.
Collapse
Affiliation(s)
- Alexandr Jonáš
- Institute of Scientific Instruments of CAS, Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Zdeněk Pilát
- Institute of Scientific Instruments of CAS, Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Jan Ježek
- Institute of Scientific Instruments of CAS, Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Silvie Bernatová
- Institute of Scientific Instruments of CAS, Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Petr Jedlička
- Institute of Scientific Instruments of CAS, Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Mehdi Aas
- Department of Physics, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Alper Kiraz
- Department of Physics, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Pavel Zemánek
- Institute of Scientific Instruments of CAS, Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| |
Collapse
|
6
|
Wang C, Gong C, Zhang Y, Qiao Z, Yuan Z, Gong Y, Chang GE, Tu WC, Chen YC. Programmable Rainbow-Colored Optofluidic Fiber Laser Encoded with Topologically Structured Chiral Droplets. ACS NANO 2021; 15:11126-11136. [PMID: 34137585 DOI: 10.1021/acsnano.1c02650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optofluidic lasers are emerging building blocks with immense potential in the development of miniaturized light sources, integrated photonics, and sensors. The capability of on-demand lasing output with programmable and continuous wavelength tunability over a broad spectral range enables key functionalities in wavelength-division multiplexing and manipulation of light-matter interactions. However, the ability to control multicolor lasing characteristics within a small mode volume with high reconfigurability remains challenging. The color gamut is also restricted by the number of dyes and emission wavelength of existing materials. In this study, we introduce a fully programmable multicolor laser by encapsulating organic-dye-doped cholesteric liquid crystal microdroplet lasers in an optofluidic fiber. A mechanism for tuning laser emission wavelengths was proposed by manipulating the topologically induced nanoshell structures in microdroplets with different chiral dopant concentrations. Precision control of distinctive lasing wavelengths and colors covering the entire visible spectra was achieved, including monochromatic lasing, dual-color lasing, tri-color lasing, and white colored lasing with tunable color temperatures. Our findings revealed a CIE color map with 145% more perceptible colors than the standard RGB space, shedding light on the development of programmable lasers, multiplexed encoding, and biomedical detection.
Collapse
Affiliation(s)
- Chenlu Wang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Chaoyang Gong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yifan Zhang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhen Qiao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhiyi Yuan
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yuan Gong
- Key Laboratory of Optical Fiber Sensing and Communications, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
| | - Guo-En Chang
- Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Wei-Chen Tu
- Department of Electrical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
7
|
Hanczyc P, Rajchel-Mieldzioć P, Feng B, Fita P. Identification of Thioflavin T Binding Modes to DNA: A Structure-Specific Molecular Probe for Lasing Applications. J Phys Chem Lett 2021; 12:5436-5442. [PMID: 34080857 PMCID: PMC8280760 DOI: 10.1021/acs.jpclett.1c01254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 05/17/2023]
Abstract
The binding mechanism of thioflavin T (ThT) to DNA was studied using polarized light spectroscopy and fluorescence-based techniques in solutions and in solid films. Linear dichroism measurements showed that ThT binds to DNA duplex by intercalation. Time-resolved fluorescence studies revealed a second binding mode which is the external binding to the DNA phosphate groups. Both binding modes represent the nonspecific type of interactions. The studies were complemented with the analysis of short oligonucleotides having DNA cavities. The results indicate that the interplay between three binding modes-intercalation, external binding, and binding inside DNA cavities-determines the effective fluorescence quantum yield of the dye in the DNA structures. External binding was found to be responsible for fluorescence quenching because of energy transfer between intercalated and externally bound molecules. Finally, amplified spontaneous emission (ASE) was successfully generated in the ThT-stained films and used for detecting different DNA structures. ASE measurements show that ThT-stained DNA structures can be used for designing bioderived microlasers.
Collapse
Affiliation(s)
- P. Hanczyc
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - P. Rajchel-Mieldzioć
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - B. Feng
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - P. Fita
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
8
|
Pan T, Lu D, Xin H, Li B. Biophotonic probes for bio-detection and imaging. LIGHT, SCIENCE & APPLICATIONS 2021; 10:124. [PMID: 34108445 PMCID: PMC8190087 DOI: 10.1038/s41377-021-00561-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
The rapid development of biophotonics and biomedical sciences makes a high demand on photonic structures to be interfaced with biological systems that are capable of manipulating light at small scales for sensitive detection of biological signals and precise imaging of cellular structures. However, conventional photonic structures based on artificial materials (either inorganic or toxic organic) inevitably show incompatibility and invasiveness when interfacing with biological systems. The design of biophotonic probes from the abundant natural materials, particularly biological entities such as virus, cells and tissues, with the capability of multifunctional light manipulation at target sites greatly increases the biocompatibility and minimizes the invasiveness to biological microenvironment. In this review, advances in biophotonic probes for bio-detection and imaging are reviewed. We emphatically and systematically describe biological entities-based photonic probes that offer appropriate optical properties, biocompatibility, and biodegradability with different optical functions from light generation, to light transportation and light modulation. Three representative biophotonic probes, i.e., biological lasers, cell-based biophotonic waveguides and bio-microlenses, are reviewed with applications for bio-detection and imaging. Finally, perspectives on future opportunities and potential improvements of biophotonic probes are also provided.
Collapse
Affiliation(s)
- Ting Pan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Dengyun Lu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
9
|
Gong C, Qiao Z, Yuan Z, Huang S, Wang W, Wu PC, Chen Y. Topological Encoded Vector Beams for Monitoring Amyloid-Lipid Interactions in Microcavity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100096. [PMID: 34194941 PMCID: PMC8224421 DOI: 10.1002/advs.202100096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Indexed: 05/05/2023]
Abstract
Lasers are the pillars of modern photonics and sensing. Recent advances in microlasers have demonstrated its extraordinary lasing characteristics suitable for biosensing. However, most lasers utilized lasing spectrum as a detection signal, which can hardly detect or characterize nanoscale structural changes in microcavity. Here the concept of amplified structured light-molecule interactions is introduced to monitor tiny bio-structural changes in a microcavity. Biomimetic liquid crystal droplets with self-assembled lipid monolayers are sandwiched in a Fabry-Pérot cavity, where subtle protein-lipid membrane interactions trigger the topological transformation of output vector beams. By exploiting Amyloid β (Aβ)-lipid membrane interactions as a proof-of-concept, it is demonstrated that vector laser beams can be viewed as a topology of complex laser modes and polarization states. The concept of topological-encoded laser barcodes is therefore developed to reveal dynamic changes of laser modes and Aβ-lipid interactions with different Aβ assembly structures. The findings demonstrate that the topology of vector beams represents significant features of intracavity nano-structural dynamics resulted from structured light-molecule interactions.
Collapse
Affiliation(s)
- Chaoyang Gong
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Zhen Qiao
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Zhiyi Yuan
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Shih‐Hsiu Huang
- Department of PhotonicsNational Cheng Kung UniversityTainan70101Taiwan
| | - Wenjie Wang
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Pin Chieh Wu
- Department of PhotonicsNational Cheng Kung UniversityTainan70101Taiwan
| | - Yu‐Cheng Chen
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| |
Collapse
|
10
|
Yang X, Gong C, Wang Y, Luo Y, Rao YJ, Peng GD, Gong Y. A sequentially bioconjugated optofluidic laser for wash-out-free and rapid biomolecular detection. LAB ON A CHIP 2021; 21:1686-1693. [PMID: 33949394 DOI: 10.1039/d0lc01332c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microstructures can improve both sensitivity and assay time in heterogeneous assays (such as ELISA) for biochemical analysis; however, it remains a challenge to perform the essential wash process in those microstructure-based heterogeneous assays. Here, we propose a sequential bioconjugation protocol to solve this problem and demonstrate a new type of fiber optofluidic laser for biosensing. Except for acting as an optical microresonator and a microstructured substrate, the miniaturized hollow optical fiber (HOF) is used as a microfluidic channel for storing and transferring reagents thanks to its capability in length extension. Through the capillary action, different reagents were sequentially withdrawn into the fiber for specific binding and washing purposes. By using the sequentially bioconjugated FOFL, avidin molecules are detected based on competitive binding with a limit of detection of 9.5 pM, ranging from 10 pM to 100 nM. It is demonstrated that a short incubation time of 10 min is good enough to allow the biomolecules to conjugate on the inner surface of the HOF. Owing to its miniaturized size, only 589 nL of liquid is required for incubation, which reduces the sample consumption and cost for each test. This work provides a tool to exploit the potential of microstructured optical fibers in high-performance biosensing.
Collapse
Affiliation(s)
- Xi Yang
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., Chengdu, 611731 China.
| | - Chaoyang Gong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798 Singapore
| | - Yanqiong Wang
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., Chengdu, 611731 China.
| | - Yanhua Luo
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yun-Jiang Rao
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., Chengdu, 611731 China. and Research Center for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou, Zhejiang 310000, China
| | - Gang-Ding Peng
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuan Gong
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), School of Information and Communication Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., Chengdu, 611731 China.
| |
Collapse
|
11
|
Zhang Y, Zhang C, Fan Y, Liu Z, Hu F, Zhao YS. Smart Protein-Based Biolasers: An Alternative Way to Protein Conformation Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19187-19192. [PMID: 33871261 DOI: 10.1021/acsami.0c22270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detecting conformational changes in protein is imperative due to its major role in neurodegenerative disorders. Here, we propose an alternative strategy for monitoring the structural change of proteins based on biological microlasers. Smart responsive protein-based microscale biolasers were constructed by incorporating organic gain medium into the microspheres of silk fibroin via emulsion-solvent evaporation. The lasing characteristic of the biolasers exhibited a sensitive response to the structural transformation of the silk fibroin. With narrowed linewidth, the as-prepared biolasers as sensing signals enable highly sensitive protein conformation detection. These results offer an effective approach to monitoring the protein conformational changes and provide valuable guidance for a better understanding of the relationship between bio-microstructures and their photonic properties.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuqing Fan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fengqin Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Gong X, Feng S, Qiao Z, Chen YC. Imaging-Based Optofluidic Biolaser Array Encapsulated with Dynamic Living Organisms. Anal Chem 2021; 93:5823-5830. [PMID: 33734676 DOI: 10.1021/acs.analchem.1c00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optofluidic biolasers have emerged as promising tools for biomedical analysis due to their strong light-matter interactions and miniaturized size. Recent developments in optofluidic lasers have opened a new Frontier in monitoring biological processes. However, most biolasers require precise recording of the lasing spectrum at the single cavity level, which limits its application in high-throughput applications. Herein, a microdroplet laser array encapsulated with living Escherichia coli was printed on highly reflective mirrors, where laser emission images were employed to reflect the dynamic changes in living organisms. The concept of image-based lasing analysis was proposed by quantifying the integrated pixel intensity of the lasing image from whispering-gallery modes. Finally, dynamic interactions between E. coli and antibiotic drugs were compared under fluorescence and laser emission images. The amplification that occurred during laser generation enabled the quantification of tiny biological changes in the gain medium. Laser imaging presented a significant increase in integrated pixel intensity by 2 orders of magnitude. Our findings demonstrate that image-based lasing analysis is more sensitive to dynamic changes than fluorescence analysis, paving the way for high-throughput on-chip laser analysis of living organisms.
Collapse
Affiliation(s)
- Xuerui Gong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., 639798, Singapore
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
| | - Zhen Qiao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., 639798, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., 639798, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Dr., 639798, Singapore
| |
Collapse
|