1
|
Zhu B, Guo C, Li N, Liu P, Zhang M, Wang L, Xu Z. From Sheep Track to Motorway: Supramolecular-Mediated 2D Nanofluidic Channels for Ultrafast Water Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309253. [PMID: 38126674 DOI: 10.1002/smll.202309253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Atomic thick 2D materials hold great potential as building blocks to construct highly permeable membranes, yet the permeability of laminar 2D material membranes is still limited by their irregularity sheep track-like interlayer channels. Herein, a supramolecular-mediated strategy to induce the regular assembly of high-throughput 2D nanofluidic channels based on host-guest interactions is proposed. Inspired by the characteristics of motorways, supramolecular-mediated ultrathin 2D membranes with broad and continuous regular water transport channels are successfully constructed using graphene oxide (GO) as an example. The prepared membrane achieves an ultrahigh water permeability (369.94 LMH bar-1) more than six times higher than that of the original membranes while maintaining dye rejection above 98.5%, which outperforms the reported 2D membranes. Characterization and simulation results show that the introduction of hyaluronate-grafted β-cyclodextrin not only expands the interlayer channels of GO membranes but also enables the membranes to operate stably under harsh conditions with the help of host-guest interactions. This universal supramolecular assembly strategy provides new opportunities for the preparation of 2D membranes with high separation performance and reliable and stable nanofluidic channels.
Collapse
Affiliation(s)
- Bo Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Changsheng Guo
- School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Nan Li
- Tiangong University, Tianjin, 300387, China
| | - Pengbi Liu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Mengchen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Lijing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
2
|
Wu D, Sun M, Zhang W, Zhang W. Simultaneous Regulation of Surface Properties and Microstructure of Graphene Oxide Membranes for Enhanced Nanofiltration Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37890008 DOI: 10.1021/acsami.3c14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The surface properties and microstructure of graphene oxide (GO)-based membranes are both crucial for enhanced nanofiltration performance. Herein, a GO nanofiltration membrane is fabricated with regulatable surface properties and microstructure via a facile two-step impregnation in KOH and following HCl aqueous solutions. The type and number of oxygen-containing groups in GO membranes change with fewer C-O-C/C-OH and C═O but more COOH groups, and they are readily regulated by alkaline treatment time, which enables enhanced surface hydrophilicity and larger surface ζ potentials. Meanwhile, a few tiny defects are present in the GO sheets, which could increase the number of pores and decrease the length of water nanochannels. Such surface properties and microstructure together determine the excellent nanofiltration performance of the GO membranes with fast and selective water permeation, e.g., ∼99.5% rejection toward CBB G250 and flux of 56.9 ± 1.0 L m-2 h-1. This work provides insights into the design of high-performance two-dimensional laminar membranes.
Collapse
Affiliation(s)
- Daowen Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Mengyao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Wenbin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
3
|
Lin Z, Zhong J, Sun R, Wei Y, Sun Z, Li W, Chen L, Sun Y, Zhang H, Pang J, Jiang Z. InSitu Integrated Fabrication for Multi-Interface Stabilized and Highly Durable Polyaniline@Graphene Oxide/Polyether Ether Ketone Special Separation Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302654. [PMID: 37381631 PMCID: PMC10477839 DOI: 10.1002/advs.202302654] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Special separation membranes are widely employed for separation and purification purposes under challenging operating conditions due to their low energy consumption, excellent solvent, and corrosion resistance. However, the development of membranes is limited by corrosion-resistant polymer substrates and precise interfacial separation layers. Herein, polyaniline (PANI) is employed to achieve insitu anchoring of multiple interfaces, resulting in the fabrication of polyaniline@graphene oxide/polyether ether ketone (PANI@GO/PEEK) membranes. Insitu growth of PANI achieves the adequate bonding of the PEEK substrate and GO separation interface, which solves the problem of solution processing of PEEK and the instability of GO layers. By bottom-up confined polymerization of aniline, it could control the pore size of the separation layer, correct defects, and anchor among polymer, nano-separation layer, and nano-sheet. The mechanism of membrane construction within the confined domain and micro-nano structure modulation is further explored. The membranes demonstrate exceptional stability realizing over 90% rejection in 2 m HCl, NaOH, and high temperatures. Additionally, -membranes exhibit remarkable durability after 240 days immersion and 100 h long-term operation, which display the methanol flux of 50.2 L m-2 h-1 and 92% rejection of AF (585 g mol-1 ). This method substantially contributes to special separation membranes by offering a novel strategy.
Collapse
Affiliation(s)
- Ziyu Lin
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jundong Zhong
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Runyin Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yingzhen Wei
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Zhonghui Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Wenying Li
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Liyuan Chen
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yirong Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Haibo Zhang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jinhui Pang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Zhenhua Jiang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
4
|
Lin Z, Cao N, Li C, Sun R, Li W, Chen L, Sun Y, Zhang H, Pang J, Jiang Z. Micro-nanostructure tuning of PEEK porous membrane surface based on PANI in-situ growth for antifouling ultrafiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Liu L, Huang J, Li P, Jiang L, Feng Q, Liu C, Jia J, Zhang M. Unveiling the interlayers and edges predominant controlling transport pathways in laminar graphene oxide membranes via different assembly strategies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Lu Y, Zhou ZB, Qi QY, Yao J, Zhao X. Polyamide Covalent Organic Framework Membranes for Molecular Sieving. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37019-37027. [PMID: 35938591 DOI: 10.1021/acsami.2c07753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyamide is an important class of membrane materials for separation technology. The polyamide membranes currently used are amorphous, and thus, their pore structures are disordered, which inevitably decreases their performance in separation. Herein, we report a new type of polyamide membranes which are fabricated from amide-linked covalent organic frameworks (COFs), a class of crystalline porous polymers with well-ordered pore structures. Thanks to the structural advantages of amide-linked COFs, the polyamide COF membranes not only exhibit high permeability (482.3 L m-2 h-1 bar-1 to water) and high rejection rate to organic dyes (>99% for methylene blue) but also display excellent stability under a harsh environment. The vantage of the polyamide COF membranes is also manifested by the comparison of their mechanical property, stability, and separation performance with that of the membranes fabricated from the COFs having the same building blocks but linked with imine and amine linkages. This work demonstrates that amide-linked COFs, which combine the structural features of COFs and polyamide, could be a new type of advanced materials for the fabrication of high-performance separation membranes.
Collapse
Affiliation(s)
- Ya Lu
- College of Chemistry and Material Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhi-Bei Zhou
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qiao-Yan Qi
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin Yao
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Xin Zhao
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Muñoz-Rugeles L, Arenas-Blanco BA, Del Campo JM, Mejía-Ospino E. Wettability of graphene oxide functionalized with N-alkylamines: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:11412-11419. [PMID: 35504048 DOI: 10.1039/d2cp00292b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The wettability of graphene oxide functionalized with N-alkylamines was studied by molecular dynamics simulations. Six different N-alkylamines and two functionalization degrees were reviewed. The nucleophilic ring-opening reaction mechanism between the N-alkylamines and epoxy functional groups of graphene oxide was considered to generate the atomistic models. Water contact angles increased with both the alkyl chain length and substitution degree. The Wenzel model was used to access the effect of both the surface roughness and alkyl chain length on wettability. The results indicated that functionalization introduces an important increase of surface roughness but its effect on wettability is countered by the alkyl chain length.
Collapse
Affiliation(s)
- Leonardo Muñoz-Rugeles
- Universidad Industrial de Santander, Laboratorio de Espectroscopia Atómica y Molecular (LEAM), Bucaramanga, Colombia.
| | - Brayan Alberto Arenas-Blanco
- Universidad Industrial de Santander, Laboratorio de Espectroscopia Atómica y Molecular (LEAM), Bucaramanga, Colombia.
| | - Jorge M Del Campo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Enrique Mejía-Ospino
- Universidad Industrial de Santander, Laboratorio de Espectroscopia Atómica y Molecular (LEAM), Bucaramanga, Colombia.
| |
Collapse
|
8
|
Liu X, Wu H, Wu P. Synchronous Engineering for Biomimetic Murray Porous Membranes Using Isocyanate. NANO LETTERS 2022; 22:3077-3086. [PMID: 35343706 DOI: 10.1021/acs.nanolett.2c00423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly permselective and durable membranes are desirable for massive separation applications. However, currently most membranes prepared using nonsolvent-induced phase separation (NIPS) suffer from low permeability and a high fouling tendency due to the great challenges in a rational design and also practical approach for membrane optimization. Inspired by the natural Murray network from vascular plants, we developed a hierarchical membrane via a straightforward yet robust strategy, using isocyanate as a multifunctional additive. Thanks to the integrated functions of a phase separation regulator, blowing agent, cross-linker, and functionalization anchor of isocyanate, our strategy is featured as a perfect combination of a phase separation and chemical reaction, and it enables synchronous engineering of the membrane hierarchy on porosity and components. The representative membrane exhibits superior water permeance (334 L/m2·h·bar), protein retention (>98%), and antifouling ability (flux recover ratio ∼ 98%). This work highlights a versatile path for pursuing a highly enhanced performance of NIPS-made membranes, from the fancy perspective of Murray bionics.
Collapse
Affiliation(s)
- Xueyuan Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Huiqing Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Peiyi Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| |
Collapse
|
9
|
Chen J, Wu X, Chen C, Chen Y, Li W, Wang J. Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomization for highly stable and selective organics permeation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zhou S, Xie L, Yan M, Zeng H, Zhang X, Zeng J, Liang Q, Liu T, Chen P, Jiang L, Kong B. Super-assembly of freestanding graphene oxide-aramid fiber membrane with T-mode subnanochannels for sensitive ion transport. Analyst 2022; 147:652-660. [PMID: 35060575 DOI: 10.1039/d1an02232f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomimetic nacre-like membranes composed of two-dimensional lamellar sheets and one-dimensional nanofibers exhibit high mechanical strength and excellent stability. Thus, they show substantial application in the field of membrane science and water purification. However, the limited techniques for the assembly of two-dimensional lamellar membranes and one-dimensional nanofibers hamper their development and application. Herein, we developed a nacre-like and freestanding graphene oxide/aramid fiber membrane with abundant T-mode subnanochannels by introducing aramid fibers into graphene oxide interlamination via the super-assembly interaction between graphene oxide and aramid fibers. Benefiting from the presence of stable and adjustable sub-nanometer-size ion transport channels, the graphene oxide/aramid fiber composite membrane exhibited excellent mono/divalent ion selectivity of 3.51 (K+/Mg2+), which is superior to that of the pure graphene oxide membrane. The experimental results suggest that the mono/divalent ion selectivity is ascribed to the subnanochannels in the graphene oxide/aramid fiber composite membrane, electrostatic repulsion interaction and strong interaction between the divalent metal ion and carboxyl groups. Moreover, the composite membrane exhibited remarkable charge selectivity with a K+/Cl- ratio of up to ∼158, indicating that this graphene oxide/aramid fiber composite membrane has great potential for application in energy conversion. This study provides an avenue to prepare freestanding and nacre-like composite membranes with abundant T-mode ion transport channels for ion recognition and energy conversion, which also shows great application prospects in the field of membrane science and water purification.
Collapse
Affiliation(s)
- Shan Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Lei Xie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Miao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Hui Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Xin Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Jie Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Qirui Liang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Tianyi Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
11
|
Feng Y, Peng H, Zhao Q. Fabrication of high performance Mg2+/Li+ nanofiltration membranes by surface grafting of quaternized bipyridine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Zhang M, Li P, Li M, Zheng W, Xie G, Xu X, Liu C, Jia J. Controlling assembly behaviors of laminar GO membranes in organic solvents by altering GO-solvent interactions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|