1
|
Neuhoff M, Wang Y, Vantangoli NJ, Poirier MG, Castro CE, Pfeifer WG. Recycling Materials for Sustainable DNA Origami Manufacturing. NANO LETTERS 2024; 24:12080-12087. [PMID: 39315689 PMCID: PMC11451448 DOI: 10.1021/acs.nanolett.4c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
DNA origami nanotechnology has great potential in multiple fields including biomedical, biophysical, and nanofabrication applications. However, current production pipelines lead to single-use devices incorporating a small fraction of initial reactants, resulting in a wasteful manufacturing process. Here, we introduce two complementary approaches to overcome these limitations by recycling the strand components of DNA origami nanostructures (DONs). We demonstrate reprogramming entire DONs into new devices, reusing scaffold strands. We validate this approach by reprogramming DONs with complex geometries into each other, using their distinct geometries to verify successful scaffold recycling. We reprogram one DON into a dynamic structure and show both pristine and recycled structures display similar properties. Second, we demonstrate the recovery of excess staple strands postassembly and fold DONs with these recycled strands, showing these structures exhibit the expected geometry and dynamic properties. Finally, we demonstrate the combination of both approaches, successfully fabricating DONs solely from recycled DNA components.
Collapse
Affiliation(s)
- Michael
J. Neuhoff
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuchen Wang
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas J. Vantangoli
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Carlos E. Castro
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wolfgang G. Pfeifer
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Krauss SW, Weiss M. Controlling phase separations and reactions in trapped microfluidic droplets. Sci Rep 2024; 14:20998. [PMID: 39251851 PMCID: PMC11385582 DOI: 10.1038/s41598-024-71586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Microfluidics and droplet-based assays are the basis for numerous high-throughput experiments, including bio-inspired microreactors and selection platforms for directed evolution. While elaborate techniques are available for the production of picoliter-sized droplets, there is an increasing demand for subsequent manipulation and control of the droplet interior. Here, we report on a straightforward method to rapidly adjust the size of single to several hundred double-emulsion droplets in a microfluidic sieve by varying the carrier fluid's salt concentration. We show that the concomitant concentration changes in the droplet interior can drive a reversible demixing transition in a biomimetic binary fluid. As another application, we show that growing and shrinking of trapped droplets can be utilized to achieve a reversible dissociation of double-stranded DNA into single strands, i.e. cycles of reversible DNA hybridization, similar to PCR cycles, can be achieved by reversibly changing the droplet size at constant temperature. Altogether, our approach shows how a simple and temporally tunable manipulation of the size and the chemistry in prefabricated droplets can be achieved by an external control parameter.
Collapse
Affiliation(s)
- Sebastian W Krauss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.
| |
Collapse
|
3
|
DeLuca M, Duke D, Ye T, Poirier M, Ke Y, Castro C, Arya G. Mechanism of DNA origami folding elucidated by mesoscopic simulations. Nat Commun 2024; 15:3015. [PMID: 38589344 PMCID: PMC11001925 DOI: 10.1038/s41467-024-46998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Many experimental and computational efforts have sought to understand DNA origami folding, but the time and length scales of this process pose significant challenges. Here, we present a mesoscopic model that uses a switchable force field to capture the behavior of single- and double-stranded DNA motifs and transitions between them, allowing us to simulate the folding of DNA origami up to several kilobases in size. Brownian dynamics simulations of small structures reveal a hierarchical folding process involving zipping into a partially folded precursor followed by crystallization into the final structure. We elucidate the effects of various design choices on folding order and kinetics. Larger structures are found to exhibit heterogeneous staple incorporation kinetics and frequent trapping in metastable states, as opposed to more accessible structures which exhibit first-order kinetics and virtually defect-free folding. This model opens an avenue to better understand and design DNA nanostructures for improved yield and folding performance.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27705, USA
| | - Daniel Duke
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27705, USA
| | - Tao Ye
- Department of Chemistry & Biochemistry, University of California, Merced, CA, 95343, USA
- Department of Materials and Biomaterials Science & Engineering, University of California, Merced, CA, 95343, USA
| | - Michael Poirier
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yonggang Ke
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Carlos Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27705, USA.
| |
Collapse
|
4
|
Gambietz S, Stenke LJ, Saccà B. Sequence-dependent folding of monolayered DNA origami domains. NANOSCALE 2023; 15:13120-13132. [PMID: 37503690 DOI: 10.1039/d3nr02537c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Current models of DNA origami folding can explain the yield of the assembly process and the isomerization of the structure upon the application of mechanical forces. Nevertheless, the role of the sequence in this conformational transformation is still unclear. In this work, we address this question by performing a systematic thermodynamic study of three origami domains that have an identical design but different sequence contents. By comparing the thermal stability of the domains in various settings and measuring the extent of isomerization at equilibrium (both at the global and single-molecule levels), we extract the contribution to folding given by the sequence and propose thermal criton maps of the isomers to rationalize our findings. Our data contribute to a deeper understanding of DNA origami assembly by considering both the topological- and thermal-dependent properties of the sites of initial folding. While the former are responsible for the mechanical aspects of the process, the latter justify the observed sequence-dependent conformational preferences, which appear evident in simple origami structures but remain typically undisclosed in large and more intricate architectures.
Collapse
Affiliation(s)
- Sabrina Gambietz
- Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg Essen (CENIDE), University Duisburg-Essen, 45141 Essen, Germany.
| | - Lena J Stenke
- Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg Essen (CENIDE), University Duisburg-Essen, 45141 Essen, Germany.
| | - Barbara Saccà
- Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg Essen (CENIDE), University Duisburg-Essen, 45141 Essen, Germany.
| |
Collapse
|
5
|
Langlois NI, Ma KY, Clark HA. Nucleic acid nanostructures for in vivo applications: The influence of morphology on biological fate. APPLIED PHYSICS REVIEWS 2023; 10:011304. [PMID: 36874908 PMCID: PMC9869343 DOI: 10.1063/5.0121820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/12/2022] [Indexed: 05/23/2023]
Abstract
The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance in vivo. In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs in vitro. Finally, the current understanding of the obstacles encountered along the in vivo journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.
Collapse
Affiliation(s)
- Nicole I. Langlois
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kristine Y. Ma
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
6
|
Bednarz A, Sønderskov SM, Dong M, Birkedal V. Ion-mediated control of structural integrity and reconfigurability of DNA nanostructures. NANOSCALE 2023; 15:1317-1326. [PMID: 36545884 DOI: 10.1039/d2nr05780h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nucleic acid-based biomolecular self-assembly enables the creation of versatile functional architectures. Electrostatic screening of the negative charges of nucleic acids is essential for their folding and stability; thus, ions play a critical role in nucleic acid self-assembly in both biology and nanotechnology. However, the ion-DNA interplay and the resulting ion-specific structural integrity and responsiveness of DNA constructs are underexploited. Here, we harness a wide range of mono- and divalent ions to control the structural features of DNA origami constructs. Using atomic force microscopy and Förster resonance energy transfer (FRET) spectroscopy down to the single-molecule level, we report on the global and local structural performance and responsiveness of DNA origami constructs following self-assembly, upon post-assembly ion exchange and post-assembly ion-mediated reconfiguration. We determined the conditions for highly efficient DNA origami folding in the presence of several mono- (Li+, Na+, K+, Cs+) and divalent (Ca2+, Sr2+, Ba2+) ions, expanding the range where DNA origami structures can be exploited for custom-specific applications. We then manipulated fully folded constructs by exposing them to unfavorable ionic conditions that led to the emergence of substantial disintegrity but not to unfolding. Moreover, we found that poorly assembled nanostructures at low ion concentrations undergo substantial self-repair upon ion addition in the absence of free staple strands. This reconfigurability occurs in an ion type- and concentration-specific manner. Our findings provide a fundamental understanding of the ion-mediated structural responsiveness of DNA origami at the nanoscale enabling applications under a wide range of ionic conditions.
Collapse
Affiliation(s)
- Aleksandra Bednarz
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark.
| | | | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
7
|
Majikes JM, Liddle JA. Synthesizing the biochemical and semiconductor worlds: the future of nucleic acid nanotechnology. NANOSCALE 2022; 14:15586-15595. [PMID: 36268635 PMCID: PMC10949957 DOI: 10.1039/d2nr04040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since its inception nearly 40 years ago [Kallenbach, et al., Nature, 1983, 305, 829; N. C. Seeman, J. Theoretical Biology, 1982, 99, 237], Nucleic Acid Nanotechnology (NAN) has matured and is beginning to find commercial applications. For the last 20 years, it has been suggested that NAN might be an effective replacement for parts of the semiconductor lithography or protein engineering workflows. However, in that time, these incumbent technologies have made significant advances, and our understanding of NAN's strengths and weaknesses has progressed, suggesting that the greatest opportunities in fact lie elsewhere. Given the commitment of resources necessary to bring new technologies to the market and the desire to use those resources as wisely as possible, we conduct a critical examination of where NAN may benefit from, and provide benefit to, adjacent technologies and compete least with market incumbents. While the accuracy of our conclusions may be limited by our ability to extrapolate from the current state of NAN to its future commercial success, we conclude that the next promising direction is to create a bridge between biology and semiconductor technology. We also hope to stimulate a robust conversation around this technology's capabilities with the goal of building consensus on those research and development efforts that would advance NAN to the greatest effect in real-world applications.
Collapse
Affiliation(s)
- Jacob M Majikes
- Physical Measurement Laboratory, National Institute Standards and Technology, 100 Bureau drive, Gaithersburg, MD, 20878, USA.
| | - J Alexander Liddle
- Physical Measurement Laboratory, National Institute Standards and Technology, 100 Bureau drive, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
8
|
Wang J, Wei Y, Zhang P, Wang Y, Xia Q, Liu X, Luo S, Shi J, Hu J, Fan C, Li B, Wang L, Zhou X, Li J. Probing Heterogeneous Folding Pathways of DNA Origami Self-Assembly at the Molecular Level with Atomic Force Microscopy. NANO LETTERS 2022; 22:7173-7179. [PMID: 35977401 DOI: 10.1021/acs.nanolett.2c02447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A myriad of DNA origami nanostructures have been demonstrated in various intriguing applications. In pursuit of facile yet high-yield synthesis, the mechanisms underlying DNA origami folding need to be resolved. Here, we visualize the folding processes of several multidomain DNA origami structures under ambient annealing conditions in solution using atomic force microscopy with submolecular resolution. We reveal the coexistence of diverse transitional structures that might result in the same prescribed products. Based on the experimental observations and the simulation of the energy landscapes, we propose the heterogeneity of the folding pathways of multidomain DNA origami structures. Our findings may contribute to understanding the high-yield folding mechanism of DNA origami.
Collapse
Affiliation(s)
- Jianhua Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yuhui Wei
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Ping Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Yue Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Qinglin Xia
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules and National Centre for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shihua Luo
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Jiye Shi
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jun Hu
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules and National Centre for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Xingfei Zhou
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jiang Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
9
|
Cumberworth A, Frenkel D, Reinhardt A. Simulations of DNA-Origami Self-Assembly Reveal Design-Dependent Nucleation Barriers. NANO LETTERS 2022; 22:6916-6922. [PMID: 36037484 PMCID: PMC9479157 DOI: 10.1021/acs.nanolett.2c01372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Nucleation is the rate-determining step in the kinetics of many self-assembly processes. However, the importance of nucleation in the kinetics of DNA-origami self-assembly, which involves both the binding of staple strands and the folding of the scaffold strand, is unclear. Here, using Monte Carlo simulations of a lattice model of DNA origami, we find that some, but not all, designs can have a nucleation barrier and that this barrier disappears at lower temperatures, rationalizing the success of isothermal assembly. We show that the height of the nucleation barrier depends primarily on the coaxial stacking of staples that are adjacent on the same helix, a parameter that can be modified with staple design. Creating a nucleation barrier to DNA-origami assembly could be useful in optimizing assembly times and yields, while eliminating the barrier may allow for fast molecular sensors that can assemble/disassemble without hysteresis in response to changes in the environment.
Collapse
Affiliation(s)
| | - Daan Frenkel
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Aleks Reinhardt
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Cui H, Zhang T, Kong Y, Xing H, Wei B. Controllable assembly of synthetic constructs with programmable ternary DNA interaction. Nucleic Acids Res 2022; 50:7188-7196. [PMID: 35713533 PMCID: PMC9262601 DOI: 10.1093/nar/gkac478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Compared with the dual binding components in a binary interaction, the third component of a ternary interaction often serves as modulator or regulator in biochemical processes. Here, we presented a programmable ternary interaction strategy based on the natural DNA triplex structure. With the DNA triplex-based ternary interaction, we have successfully demonstrated controllable hierarchical assemblies from nanometer scale synthetic DNA nanostructure units to micrometer scale live bacteria. A selective signaling system responsive to orthogonal nucleic acid signals via ternary interaction was also demonstrated. This assembly method could further enrich the diversified design schemes of DNA nanotechnology.
Collapse
Affiliation(s)
- Huangchen Cui
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine; State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology; College of Chemistry and Chemical Engineering; Hunan University, Changsha 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine; State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology; College of Chemistry and Chemical Engineering; Hunan University, Changsha 410082, China
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Majikes JM, Zwolak M, Liddle JA. Best practice for improved accuracy: a critical reassessment of van't Hoff analysis of melt curves. Biophys J 2022; 121:1986-2001. [PMID: 35546781 DOI: 10.1016/j.bpj.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Biomolecular thermodynamics, particularly for DNA, are frequently determined via van't Hoff analysis of optically-measured melt curves. Accurate and precise values of thermodynamic parameters are essential for the modelling of complex systems involving cooperative effects, such as RNA tertiary structure and DNA origami because the uncertainties associated with each motif in a folding energy landscape can compound, significantly reducing the power of predictive models. We follow the sources of uncertainty as they propagate through a typical van't Hoff analysis to derive best practices for melt experiments and subsequent data analysis, assuming perfect signal baseline correction. With appropriately designed experiments and analysis, a van't Hoff approach can provide surprisingly high precision, e.g., enthalpies may be determined with a precision as low as a 10-2 kJ∙mol-1 for an 8 base DNA oligomer.
Collapse
Affiliation(s)
- Jacob M Majikes
- Microsystem and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland.
| | - Michael Zwolak
- Microsystem and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J Alexander Liddle
- Microsystem and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland.
| |
Collapse
|