1
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
2
|
Liu X, Liu C, Lin Q, Shi T, Liu G. Exosome-loaded hydrogels for craniofacial bone tissue regeneration. Biomed Mater 2024; 19:052002. [PMID: 38815606 DOI: 10.1088/1748-605x/ad525c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
It is common for maladies and trauma to cause significant bone deterioration in the craniofacial bone, which can cause patients to experience complications with their appearance and their ability to function. Regarding grafting procedures' complications and disadvantages, the newly emerging field of tissue regeneration has shown promise. Tissue -engineered technologies and their applications in the craniofacial region are increasingly gaining prominence with limited postoperative risk and cost. MSCs-derived exosomes are widely applied in bone tissue engineering to provide cell-free therapies since they not only do not cause immunological rejection in the same way that cells do, but they can also perform a cell-like role. Additionally, the hydrogel system is a family of multipurpose platforms made of cross-linked polymers with considerable water content, outstanding biocompatibility, and tunable physiochemical properties for the efficient delivery of commodities. Therefore, the promising exosome-loaded hydrogels can be designed for craniofacial bone regeneration. This review lists the packaging techniques for exosomes and hydrogel and discusses the development of a biocompatible hydrogel system and its potential for exosome continuous delivery for craniofacial bone healing.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Chang Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Qingquan Lin
- Institute of Applied Catalysis, College of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| | - Ting Shi
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Guanying Liu
- Department of Hand and Foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| |
Collapse
|
3
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
4
|
He S, Deng H, Li P, Hu J, Yang Y, Xu Z, Liu S, Guo W, Guo Q. Arthritic Microenvironment-Dictated Fate Decisions for Stem Cells in Cartilage Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207715. [PMID: 37518822 PMCID: PMC10520688 DOI: 10.1002/advs.202207715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Indexed: 08/01/2023]
Abstract
The microenvironment and stem cell fate guidance of post-traumatic articular cartilage regeneration is primarily the focus of cartilage tissue engineering. In articular cartilage, stem cells are characterized by overlapping lineages and uneven effectiveness. Within the first 12 weeks after trauma, the articular inflammatory microenvironment (AIME) plays a decisive role in determining the fate of stem cells and cartilage. The development of fibrocartilage and osteophyte hyperplasia is an adverse outcome of chronic inflammation, which results from an imbalance in the AIME during the cartilage tissue repair process. In this review, the sources for the different types of stem cells and their fate are summarized. The main pathophysiological events that occur within the AIME as well as their protagonists are also discussed. Additionally, regulatory strategies that may guide the fate of stem cells within the AIME are proposed. Finally, strategies that provide insight into AIME pathophysiology are discussed and the design of new materials that match the post-traumatic progress of AIME pathophysiology in a spatial and temporal manner is guided. Thus, by regulating an appropriately modified inflammatory microenvironment, efficient stem cell-mediated tissue repair may be achieved.
Collapse
Affiliation(s)
- Songlin He
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Haotian Deng
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Peiqi Li
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Jingjing Hu
- Department of GastroenterologyInstitute of GeriatricsChinese PLA General HospitalBeijing100853China
| | - Yongkang Yang
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Ziheng Xu
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Shuyun Liu
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Weimin Guo
- Department of Orthopaedic SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Quanyi Guo
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| |
Collapse
|
5
|
Qiao M, Tang W, Xu Z, Wu X, Huang W, Zhu Z, Wan Q. Gold nanoparticles: promising biomaterials for osteogenic/adipogenic regulation in bone repair. J Mater Chem B 2023; 11:2307-2333. [PMID: 36809480 DOI: 10.1039/d2tb02563a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bone defects are a common bone disease, which are usually caused by accidents, trauma and tumors. However, the treatment of bone defects is still a great clinical challenge. In recent years, research on bone repair materials has continued with great success, but there are few reports on the repair of bone defects at a high lipid level. Hyperlipidemia is a risk factor in the process of bone defect repair, which has a negative impact on the process of osteogenesis, increasing the difficulty of bone defect repair. Therefore, it is necessary to find materials that can promote bone defect repair under the condition of hyperlipidemia. Gold nanoparticles (AuNPs) have been applied in the fields of biology and clinical medicine for many years and developed to modulate osteogenic differentiation and adipogenic differentiation. In vitro and vivo studies displayed that they promoted bone formation and inhibited fat accumulation. Further, the metabolism and mechanisms of AuNPs acting on osteogenesis/adipogenesis were partially revealed by researchers. This review further clarifies the role of AuNPs in osteogenic/adipogenic regulation during the process of osteogenesis and bone regeneration by summarizing the related in vitro and in vivo research, discussing the advantages and challenges of AuNPs and highlighting several possible directions for future research, with the aim to provide a new strategy for dealing with bone defects in hyperlipidemic patients.
Collapse
Affiliation(s)
- Mingxin Qiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Wen Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaoyue Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
| | - Wei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Matthews EZ, Lanham S, White K, Kyriazi ME, Alexaki K, El-Sagheer AH, Brown T, Kanaras AG, J West J, MacArthur BD, Stumpf PS, Oreffo ROC. Single-cell RNA-sequence analysis of human bone marrow reveals new targets for isolation of skeletal stem cells using spherical nucleic acids. J Tissue Eng 2023; 14:20417314231169375. [PMID: 37216034 PMCID: PMC10192814 DOI: 10.1177/20417314231169375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/24/2023] Open
Abstract
There is a wealth of data indicating human bone marrow contains skeletal stem cells (SSC) with the capacity for osteogenic, chondrogenic and adipogenic differentiation. However, current methods to isolate SSCs are restricted by the lack of a defined marker, limiting understanding of SSC fate, immunophenotype, function and clinical application. The current study applied single-cell RNA-sequencing to profile human adult bone marrow populations from 11 donors and identified novel targets for SSC enrichment. Spherical nucleic acids were used to detect these mRNA targets in SSCs. This methodology was able to rapidly isolate potential SSCs found at a frequency of <1 in 1,000,000 in human bone marrow, with the capacity for tri-lineage differentiation in vitro and ectopic bone formation in vivo. The current studies detail the development of a platform to advance SSC enrichment from human bone marrow, offering an invaluable resource for further SSC characterisation, with significant therapeutic impact therein.
Collapse
Affiliation(s)
- Elloise Z Matthews
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
| | - Stuart Lanham
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Cancer Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
| | - Kate White
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
| | - Maria-Eleni Kyriazi
- College of Engineering and Technology,
American University of the Middle East, Kuwait
| | - Konstantina Alexaki
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford, Oxford, UK
- Chemistry Branch, Department of Science
and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez,
Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford, Oxford, UK
| | - Antonios G Kanaras
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
| | - Jonathan J West
- Cancer Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Ben D MacArthur
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
- Mathematical Sciences, University of
Southampton, Southampton, UK
| | - Patrick S Stumpf
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Joint Research Center for Computational
Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Richard OC Oreffo
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
- College of Biomedical Engineering,
China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Song Y, Song W, Lan X, Cai W, Jiang D. Spherical nucleic acids: Organized nucleotide aggregates as versatile nanomedicine. AGGREGATE (HOBOKEN, N.J.) 2022; 3:e120. [PMID: 35386748 PMCID: PMC8982904 DOI: 10.1002/agt2.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spherical nucleic acids (SNAs) are composed of a nanoparticle core and a layer of densely arranged oligonucleotide shells. After the first report of SNA by Mirkin and coworkers in 1996, it has created a significant interest by offering new possibilities in the field of gene and drug delivery. The controlled aggregation of oligonucleotides on the surface of organic/inorganic nanoparticles improves the delivery of genes and nucleic acid-based drugs and alters and regulates the biological profiles of the nanoparticle core within living organisms. Here in this review, we present an overview of the recent progress of SNAs that has speeded up their biomedical application and their potential transition to clinical use. We start with introducing the concept and characteristics of SNAs as drug/gene delivery systems and highlight recent efforts of bioengineering SNA by imaging and treatmenting various diseases. Finally, we discuss potential challenges and opportunities of SNAs, their ongoing clinical trials, and future translation, and how they may affect the current landscape of clinical practices. We hope that this review will update our current understanding of SNA, organized oligonucleotide aggregates, for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
8
|
Li X, Yang Z, Fang L, Ma C, Zhao Y, Liu H, Che S, Zvyagin AV, Yang B, Lin Q. Hydrogel Composites with Different Dimensional Nanoparticles for Bone Regeneration. Macromol Rapid Commun 2021; 42:e2100362. [PMID: 34435714 DOI: 10.1002/marc.202100362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Indexed: 12/14/2022]
Abstract
The treatment of large segmental bone defects and complex types of fractures caused by trauma, inflammation, or tumor resection is still a challenge in the field of orthopedics. Various natural or synthetic biological materials used in clinical applications cannot fully replicate the structure and performance of raw bone. This highlights how to endow materials with multiple functions and biological properties, which is a problem that needs to be solved in practical applications. Hydrogels with outstanding biocompatibility, for their casting into any shape, size, or form, are suitable for different forms of bone defects. Therefore, they have been used in regenerative medicine more widely. In this review, versatile hydrogels are compounded with nanoparticles of different dimensions, and many desirable features of these materials in bone regeneration are introduced, including drug delivery, cell factor vehicle, cell scaffolds, which have potential in bone regeneration applications. The combination of hydrogels and nanoparticles of different dimensions encourages better filling of bone defect areas and has higher adaptability. This is due to the minimally invasive properties of the material and ability to match irregular defects. These biological characteristics make composite hydrogels with different dimensional nanoparticles become one of the most attractive options for bone regeneration materials.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Linan Fang
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, 130000, China
| | - Chengyuan Ma
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, 130021, China
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hou Liu
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songtian Che
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, Changchun, 130022, China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|