1
|
Zhang K, Wu Y, Chen S, Zhu J. Programmable Reconfiguration of Supramolecular Bottlebrush Block Copolymers: From Solution Self-Assembly to Co-Crystallization-Assistant Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202408730. [PMID: 39106102 DOI: 10.1002/anie.202408730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
Achieving structural reconfiguration of supramolecular bottlebrush block copolymers toward topological engineering is of particular interest but challenging. Here, we address the creation of supramolecular architectures to discover how assembled topology influences the structured aggregates, combining hydrogen-bonded (H-bonded) bottlebrush block copolymers and electrostatic interaction induced polymer/inorganic eutectics. We first design H-bonding linear-brush block copolymer P(NBDAP-co-NBC)-b-P(NBPEO), bearing linear block P(NBDAP-co-NBC) (poly(norbornene-terminated diaminopyridine-co-norbornene-terminated hexane)) with pendant H-bonding DAP (diaminopyridine) motifs, and PEO (poly(ethylene oxide)) densely grafted P(NBPEO) brush block. Thanks to H-bonding association between DAP and thymine (Thy), incorporation of Thy-functionalized polystyrene (Thy-PS65) enables solution self-assembly and formation of H-bonded bottlebrush block copolymers, generating augmented nanospheres with increasing Thy-PS65 amount. Noteworthy that integration of inorganic cluster silicotungstic acid (STA) to P(NBC-co-NBDAP)-b-P(NBPEO), endows the formation of PEO/STA eutectic core. Therefore, co-crystallization-assistant self-assembly at the interfaces of polymeric, inorganic and supramolecular chemistry is realized, reflecting multi-stage morphology transformation from hexagonal platelets, needle-like, curved rod-like micelles, finally to end-to-end closed rings, by gradually increasing Thy-PS65 while fixing STA content. Interestingly, such solution self-assembly to co-crystallization-assistant self-assembly strategy not only endows unique nanostructure transition, also induce in-to-out reconfiguration of PS domains. These findings clearly provide unique methodology towards programmable fabrication of geometrical objects promising in smart materials.
Collapse
Affiliation(s)
- Kaixing Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Yanggui Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| |
Collapse
|
2
|
Liu D, Zhang Z, Zhang K, Li Y, Song DP. Host-Guest Interaction Mediated Interfacial Co-Assembly of Cyclodextrin and Bottlebrush Surfactants for Precisely Tunable Photonic Supraballs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312099. [PMID: 38644335 DOI: 10.1002/smll.202312099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Investigations of host-guest interactions at water-oil (w/o) interfaces are limited in single emulsion systems producing simple self-assembled objects with limited uses. Here, within hierarchically ordered water-in-oil-in-water (w/o/w) multiple emulsion droplets, interfacial self-assembly of (polynorbornene-graft-polystyrene)-block-(polynorbornene-graft-polyethylene glycol) (PNPS-b-PNPEG) bottlebrush block copolymers can be precisely controlled through host-guest interactions. α-Cyclodextrin (α-CD) in the aqueous phase can thread onto PEG side chains of the bottlebrush surfactants adsorbed at the w/o interface, leading to dehydration and collapsed chain conformation of the PEG block. Consequently, spherical curvature of the w/o internal droplets increases with the increased asymmetry of the bottlebrush molecules, producing photonic supraballs with precisely tailored structural parameters as well as photonic bandgaps. This work provides a simple but highly effective strategy for precise manipulation of complex emulsion systems applicable in a variety of applications, such as photonic pigments, cosmetic products, pesticides, artificial cells, etc.
Collapse
Affiliation(s)
- Dezhi Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhenli Zhang
- National Elite Institute of Engineering, CNPC, Beijing, 100096, China
| | - Kunyu Zhang
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
3
|
Xu J, Wu Y, Xia Y, Fatima R, Li Y, Song DP. Photonic Pigments of Polystyrene- block-Polyvinylpyrrolidone Bottlebrush Block Copolymers via Sustainable Organized Spontaneous Emulsification. ACS Macro Lett 2024; 13:495-501. [PMID: 38607961 DOI: 10.1021/acsmacrolett.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Prior studies on photonic pigments of amphiphilic bottlebrush block copolymers (BBCPs) through an organized spontaneous emulsification (OSE) mechanism have been limited to using polyethylene glycol (PEG) as the hydrophilic side chains and toluene as the organic phase. Herein, a family of polystyrene-block-polyvinylpyrrolidone (PS-b-PVP) BBCPs are synthesized with PVP as the hydrophilic block. Biocompatible and sustainable anisole is employed for dissolving the obtained BBCPs followed by emulsification of the solutions in water. Subsequent evaporation of oil-in-water emulsion droplets triggers the OSE mechanism, producing thermodynamically stable water-in-oil-in-water (w/o/w) multiple emulsions with uniform and closely packed internal droplet arrays through the assembly of the BBCPs at the w/o interface. Upon solidification, the homogeneous porous structures are formed within the photonic microparticles that exhibit visible structural colors. The pore diameter is widely tunable (150∼314 nm) by changing the degree of polymerization of BBCP (69∼110), resulting in tunable colors across the whole visible spectrum. This work demonstrates useful knowledge that OSE can be generally used in the fabrication of ordered porous materials with tunable internal functional groups, not only for photonic applications, but also offers a potential platform for catalysis, sensing, separation, encapsulation, etc.
Collapse
Affiliation(s)
- Jingcheng Xu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yulun Wu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu Xia
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Rida Fatima
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Seong HG, Jin Z, Chen Z, Hu M, Emrick T, Russell TP. Bottlebrush Block Copolymers at the Interface of Immiscible Liquids: Adsorption and Lateral Packing. J Am Chem Soc 2024; 146:13000-13009. [PMID: 38710503 DOI: 10.1021/jacs.3c13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Amphiphilic bottlebrush block copolymers (BBCPs), having a hydrophilic bottlebrush polymer (BP) linked covalently to a hydrophobic BP, were found to segregate to liquid-liquid interfaces to minimize the free energy of the system. The key parameter influencing the outcome of the experiments is the ratio between the degree of polymerization of the backbone (NBB) and that of the side-chain brushes (NSC). Specifically, a spherical, star-like configuration results when NBB < NSC, while a cylindrical, bottlebrush-like shape is preferred when NBB > NSC. Dynamic interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) measurements show that the BBCP configuration influences the areal density and in-plane diffusion at the fluid interface. The characteristic relaxation times associated with BBCP adsorption (τA) and reorganization (τR) were determined by fitting time-dependent interfacial tension measurements to a sum of two exponential relaxation functions. Both τA and τR initially increased with NBB up to 92 repeat units, due to the larger hydrodynamic radius in solution and slower in-plane diffusivity, attributed to a shorter cross-sectional diameter of the side-chains near the block junction. This trend reversed at NBB = 190, with shorter τA and τR attributed to increased segregation strength and exposure of the bare water/toluene interface due to tilting and/or wiggling of the backbone chains, respectively. The adsorption energy barrier decreased with higher NBB, due to a reduced BBCP packing density at the fluid interface. This study provides fundamental insights into macromolecular assembly at fluid interfaces, as it pertains to unique bottlebrush block architectures.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Zichen Jin
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Zhan Chen
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Mingqiu Hu
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Avalos E, Teramoto T, Hirai Y, Yabu H, Nishiura Y. Controlling the Formation of Polyhedral Block Copolymer Nanoparticles: Insights from Process Variables and Dynamic Modeling. ACS OMEGA 2024; 9:17276-17288. [PMID: 38645350 PMCID: PMC11025090 DOI: 10.1021/acsomega.3c10302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/23/2024]
Abstract
This study delves into the formation of nanoscale polyhedral block copolymer particles (PBCPs) exhibiting cubic, octahedral, and variant geometries. These structures represent a pioneering class that has never been fabricated previously. PBCP features distinct variations in curvature on the outer surface, aligning with the edges and corners of polyhedral shapes. This characteristic sharply contrasts with previous block copolymers (BCPs), which displayed a smooth spherical surface. The emergence of these cornered morphologies presents an intriguing and counterintuitive phenomenon and is linked to process parameters, such as evaporation rates and initial concentration, while keeping other variables constant. Using a system of coupled Cahn-Hillard (CCH) equations, we uncover the mechanisms driving polyhedral particle formation, emphasizing the importance of controlling relaxation parameters for shape variable u and microphase separation v. This unconventional approach, differing from traditional steepest descent method, allows for precise control and diverse polyhedral particle generation. Accelerating the shape variable u proves crucial for expediting precipitation and aligns with experimental observations. Employing the above theoretical model, we achieve shape predictions for particles and the microphase separation within them, which overcomes the limitations of ab initio computations. Additionally, a numerical stability analysis discerns the transient nature versus local minimizer characteristics. Overall, our findings contribute to understanding the complex interplay between process variables and the morphology of polyhedral BCP nanoparticles.
Collapse
Affiliation(s)
- Edgar Avalos
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takashi Teramoto
- Faculty
of Data Science, Kyoto Women’s University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto 605-8501, Japan
| | - Yutaro Hirai
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroshi Yabu
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yasumasa Nishiura
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Research
Center of Mathematics for Social Creativity, Research Institute for
Electronic Science, Hokkaido University, N12W7, Kita-Ward, Mid-Campus Open
Laboratory Building No. 2, Sapporo 060-0812, Japan
| |
Collapse
|
6
|
Lee J, Ban S, Jo K, Oh HS, Cho J, Ku KH. Dynamic Photonic Janus Colloids with Axially Stacked Structural Layers. ACS NANO 2024. [PMID: 38306170 DOI: 10.1021/acsnano.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Diblock copolymer (dBCP) particles capable of dynamic shape and color changes have gained significant attention due to their versatility in programmable shapes and intricate nanostructures. However, their application in photonic systems remains limited due to challenges in achieving a sufficient number of defect-free photonic layers over a tens-of-micrometer scale. In this study, we present a pioneering demonstration of photonic dBCP particles featuring over 300 axially stacked photonic layers with responsive color- and shape-transforming capabilities. Our approach leverages the complex interplay between the macrophase separation of multiple incompatible components and the microphase separation of dBCP from solvent-evaporative microemulsions. Specifically, continuous phase separation of silicone oil from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP), triggered by solvent evaporation, promotes the anisotropic growth of PS-b-P2VP layers. This results in the formation of Janus colloids, where an oil droplet merges with a nanostructured polymer cone and lamellar structures align along the long axis of the cone. We highlight the capability to precisely adjust the particle morphology and the corresponding orientation, dispersion, and structural color window by modulating both the molecular weight of PS-b-P2VP and the volume ratio between PS-b-P2VP and silicone oil. Furthermore, reversible swelling/deswelling of photonic colloids is visualized and correlated with their structural colors. Finally, we demonstrate the potential of this study by presenting a multicolor-patterned array of photonic colloids, highlighting the possibilities for applications in smart photonic ink and devices.
Collapse
Affiliation(s)
- Juyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soohyun Ban
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyuhyung Jo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeong Seok Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinhyeok Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
7
|
Guo Q, Wang X, Guo J, Wang C. 3D printing of non-iridescent structural color inks for optical anti-counterfeiting. NANOSCALE 2023; 15:18825-18831. [PMID: 37965806 DOI: 10.1039/d3nr05036j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In this work, structural color inks with practical significance in anti-counterfeiting applications have been successfully manufactured by facilely mixing SiO2@PDA@PHEMA hybrid colloidal particles with the mediated molecules of HEMA. The appropriate rheological properties of these photonic inks provide high viscosity and self-supporting performance, ensuring sufficient interaction between particles to form short-range ordered arrays during the mixing and shearing process and thus generating non-iridescent colors. The strong and broad uniform light absorption capabilities of polydopamine (PDA) not only suppress the incoherent multiple scattering of the photonic inks, but also impart surprising optical anti-counterfeiting properties, i.e. black color under ambient illumination and dazzling reflective coloration under strong illumination. With the 3D printing technique, complicated angle-independent patterns with visualization and high fidelity are expected to be fabricated with the as-prepared photonic inks for real-life applications in smart anti-counterfeiting labels, thus encoding encrypted information and selective color rendering accessories.
Collapse
Affiliation(s)
- Qilin Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
Uchiyama S, Sotani T, Mizokuro T, Sogawa H, Wagener KB, Sanda F. End Functionalization of Polynorbornene with Platinum–Acetylide Complexes Utilizing a Cross-Metathesis Reaction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shoichiro Uchiyama
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Osaka, Japan
| | - Taichi Sotani
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Osaka, Japan
| | - Toshiko Mizokuro
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Hiromitsu Sogawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Osaka, Japan
| | - Kenneth B. Wagener
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Fumio Sanda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Osaka, Japan
| |
Collapse
|
9
|
Guo Q, Xue R, Zhao J, Zhang Y, van de Kerkhof GT, Zhang K, Li Y, Vignolini S, Song D. Precise Tailoring of Polyester Bottlebrush Amphiphiles toward Eco‐Friendly Photonic Pigments via Interfacial Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202206723. [DOI: 10.1002/anie.202206723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Qilin Guo
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Runze Xue
- Institute of Coastal Environmental Pollution Control Key Laboratory of Marine Environment and Ecology Ministry of Education Ocean University of China Qingdao 266100 China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control Key Laboratory of Marine Environment and Ecology Ministry of Education Ocean University of China Qingdao 266100 China
- Laboratory for Marine Ecology and Environmental Science Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Yuxia Zhang
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | | | - Kunyu Zhang
- Advanced Materials Research Center Petrochemical Research Institute PetroChina Company Limited Beijing 102206 China
| | - Yuesheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Silvia Vignolini
- Department of Chemistry University of Cambridge Cambridge CB2 1EW UK
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
10
|
Chen X, Song DP, Li Y. Precisely Tunable Photonic Pigments via Interfacial Self-Assembly of Bottlebrush Block Copolymer Binary Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
11
|
Yang Y, Lin S, Feng X, Pan Q. Synthesis and Characterization of Core‐Shell Bottlebrush Polymers via Controllable Polymerization. ChemistrySelect 2022. [DOI: 10.1002/slct.202201040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuying Yang
- Green Polymer and Catalysis Technology Laboratory (GPACT) College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Shaohui Lin
- Green Polymer and Catalysis Technology Laboratory (GPACT) College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Xianshe Feng
- Department of Chemical Engineering University of Waterloo 200 University Ave. West Waterloo Ontario N2 L 3G1 Canada
| | - Qinmin Pan
- Green Polymer and Catalysis Technology Laboratory (GPACT) College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 China
| |
Collapse
|
12
|
Precise Tailoring of Polyester Bottlebrush Amphiphiles toward Eco‐Friendly Photonic Pigments via Interfacial Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Loop and Bridge Conformations of ABA Triblock Comb Copolymers: A Conformational Assessment for Molecular Composites. Polymers (Basel) 2022; 14:polym14112301. [PMID: 35683973 PMCID: PMC9183157 DOI: 10.3390/polym14112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
We computationally investigate the conformational behavior, “bridging” chain, between different the phase-separated domains vs “looping” chain on the same domain, for two chain architectures of ABA triblock copolymers, one with a linear architecture (L-TBC) and the other with comb architecture (C-TBC) at various segregation regimes using dissipative particle dynamics (DPD) simulations. The power-law relation between the bridge fraction (Φ) and the interaction parameter (χ) for C-TBC is found to be Φ∼χ−1.6 in the vicinity of the order-disorder transition (χODT), indicating a drastic conversion from the bridge to the loop conformation. When χ further increases, the bridge-loop conversions slow down to have the power law, Φ∼χ−0.18, approaching the theoretical power law Φ∼χ−1/9 predicted in the strong segregation limit. The conformational assessment conducted in the present study can provide a strategy of designing optimal material and processing conditions for triblock copolymer either with linear or comb architecture to be used for thermoplastic elastomer or molecular nanocomposites.
Collapse
|
14
|
Yuan T, Li Y, Song DP. Interfacial Self-Assembly of Amphiphilic Core-Shell Bottlebrush Block Copolymers Toward Responsive Photonic Balls Bearing Ionic Channels. Macromol Rapid Commun 2022; 43:e2200188. [PMID: 35436806 DOI: 10.1002/marc.202200188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Indexed: 11/11/2022]
Abstract
Photonic balls can be facilely obtained through interfacial self-assembly of amphiphilic bottlebrush block polymers (BBCPs) within a water-in-oil-in-water (w/o/w) multiple emulsion system, and polystyrene (PS) has been employed as the skeleton of the balls showing no responsive properties. Here, we demonstrate the design and synthesis of core-shell BBCPs with a poly(tert-butyl acrylate)-block-polystyrene (PtBA-b-PS) block copolymer as the hydrophobic side chains and poly(ethylene glycol) (PEG) as the hydrophilic block. Interfacial self-assembly of the core-shell BBCPs within shrinking droplets produces porous microspheres with full-spectrum structural colors through an organized spontaneous emulsification (OSE) process. The PtBA core wrapped by PS in the skeleton of the balls can be converted into polyacrylic acid (PAA) forming an ionic channel responsive to pH variations. Consequently, the hydrolyzed photonic balls show different colors under different pH conditions dependent on varied degrees of ionization and hydration of the PAA channel. Reflected colors can be verified using an optical spectrometer, providing an effective strategy for precise pH indication. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tengfei Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
15
|
Kim EJ, Shin JJ, Lee GS, Kim S, Park S, Park J, Choe Y, Lee D, Choi J, Bang J, Kim YH, Li S, Hur SM, Kim JG, Kim BJ. Synthesis and Self-Assembly of Poly(vinylpyridine)-Containing Brush Block Copolymers: Combined Synthesis of Grafting-Through and Grafting-to Approaches. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eun Ji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeman J. Shin
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Gue Seon Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sejong Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sora Park
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Juhae Park
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeojin Choe
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dahye Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwoong Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Hun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su-Mi Hur
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Guo Q, Li Y, Liu Q, Li Y, Song D. Janus Photonic Microspheres with Bridged Lamellar Structures via Droplet‐Confined Block Copolymer Co‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qilin Guo
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yulian Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Qiujun Liu
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yuesheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
17
|
Kim KH, Nam J, Choi J, Seo M, Bang J. From macromonomers to bottlebrush copolymers with sequence control: synthesis, properties, and applications. Polym Chem 2022. [DOI: 10.1039/d2py00126h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers (BBPs) are a type of comb-like macromolecules with densely grafted polymeric sidechains attached to the polymer backbones, and many intriguing properties and applications have been demonstrated due to...
Collapse
|
18
|
Guo Q, Li Y, Liu Q, Li Y, Song DP. Janus Photonic Microspheres with Bridged Lamellar Structures via Droplet-Confined Block Copolymer Co-Assembly. Angew Chem Int Ed Engl 2021; 61:e202113759. [PMID: 34859551 DOI: 10.1002/anie.202113759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 11/07/2022]
Abstract
Artificial self-assembly systems typically exhibit limited capability in creating nature-inspired complex materials with advanced functionalities. Here, an effective co-assembly strategy is demonstrated for the facile creation of complex photonic structures with intriguing light reflections. Two different lipophilic and amphiphilic bottlebrush block copolymers (BCPs) are placed within shrinking droplets to enable a cooperative working mechanism of microphase segregation and organized spontaneous emulsification, respectively. Layer assemblies of the lipophilic BCP and uniform water nanodroplets stabilized by the bottlebrush surfactant are both generated, and co-assembled into a bridged lamellar structure with the alternating arrangement of layers and closely packed nanodroplet arrays. Janus microspheres with diverse dual optical characteristics are successfully fabricated, and reflected wavelengths of light are highly tunable simply by changing the formulation or molecular weight of BCP.
Collapse
Affiliation(s)
- Qilin Guo
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yulian Li
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Qiujun Liu
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuesheng Li
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
19
|
Robust polymeric scaffold from 3D soft confinement self-assembly of polycondensation aromatic polymer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Jia K, Bai Y, Wang L, Luo Y, Hu W, He X, Wang P, Marks R, Liu X. Emulsion confinement self-assembly regulated lanthanide coordinating polymeric microparticles for multicolor fluorescent nanofibers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124043] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|