1
|
Zhao F, Xia C, Hao J, Donegá CDM, Delville M, Delville J. Heteronanotrimers by Selective Photodeposition of Gold Nanodots on Janus-Type Cu 2‒ xS/CuInS 2 Heteronanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407045. [PMID: 39286843 PMCID: PMC11618745 DOI: 10.1002/smll.202407045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 08/30/2024] [Indexed: 09/19/2024]
Abstract
This study focuses on the development of environmentally friendly Au-Cu2-xS/CuInS2 heteronanotrimers. The chosen strategy relies on the laser photodeposition of a single gold nanodot (ND) onto Janus Cu2- xS/CuInS2 heteronanocrystals (HNCs). This method offers precise control over the number, location, and size (5 to 8 nm) of the Au NDs by adjusting laser power for the career production, concentration of hole scavenger for charge equilibration in redox reactions, and gold precursor concentration, and exposure time for the final ND size. The photoreduction of gold ions onto HNCs starts systematically at the Cu2- xS tip. The Au deposition then depends on the CuInS2 segment length. For short HNCs, stable Au-Cu2- xS/CuInS2 heteronanotrimers form, while long HNCs undergo a secondary photo-induced step: the initial Au ND is progressively oxidized, with concomitant deposition of a second gold ND on the CuInS2 side, to yield Au2S-Cu2- xS/CuInS2-Au heteronanotrimers. Results are rationalized by quantitative comparison with a model that describes the growth kinetics of NDs and Au-Cu2- xS transformation and emphasizes the importance of charge separation in predicting selective deposition in heteronanotrimer production. The key parameter controlling Au-Cu2‒ xS/CuInS2 HNCs is the photoinduced electric field gradient generated by charge separation, which is tailored by controlling the CuInS2 segment size.
Collapse
Affiliation(s)
- Fenghuan Zhao
- CNRSUniv. BordeauxBordeaux INPICMCBUMR 5026, 87 avenue du Dr. A. SchweitzerPessacF‐33608France
- Univ. BordeauxCNRSLOMAUMR 5798, 351 Cours de la LiberationTalence33405France
| | - Chenghui Xia
- Condensed Matter and InterfacesDebye Institute for Nanomaterials ScienceUtrecht UniversityUtrecht3508 TAThe Netherlands
- School of Materials Science and EngineeringOcean University of China238 Songling RoadQingdao266100P. R. China
- Present address:
Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology)Ministry of EducationShenzhen518055China
| | - Junjie Hao
- CNRSUniv. BordeauxBordeaux INPICMCBUMR 5026, 87 avenue du Dr. A. SchweitzerPessacF‐33608France
- Univ. BordeauxCNRSLOMAUMR 5798, 351 Cours de la LiberationTalence33405France
- Present address:
Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology)Ministry of EducationShenzhen518055China
| | - Celso de Mello Donegá
- Condensed Matter and InterfacesDebye Institute for Nanomaterials ScienceUtrecht UniversityUtrecht3508 TAThe Netherlands
| | - Marie‐Hélène Delville
- CNRSUniv. BordeauxBordeaux INPICMCBUMR 5026, 87 avenue du Dr. A. SchweitzerPessacF‐33608France
| | | |
Collapse
|
2
|
Li Z, Saruyama M, Asaka T, Teranishi T. Waning-and-waxing shape changes in ionic nanoplates upon cation exchange. Nat Commun 2024; 15:4899. [PMID: 38851762 PMCID: PMC11162454 DOI: 10.1038/s41467-024-49294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Flexible control of the composition and morphology of nanocrystals (NCs) over a wide range is an essential technology for the creation of functional nanomaterials. Cation exchange (CE) is a facile method by which to finely tune the compositions of ionic NCs, providing an opportunity to obtain complex nanostructures that are difficult to form using conventional chemical synthesis procedures. However, due to their robust anion frameworks, CE cannot typically be used to modify the original morphology of the host NCs. In this study, we report an anisotropic morphological transformation of Cu1.8S NCs during CE. Upon partial CE of Cu1.8S nanoplates (NPLs) with Mn2+, the hexagonal NPLs are transformed into crescent-shaped Cu1.8S-MnS NPLs. Upon further CE, these crescent-shaped NPLs evolve back into completely hexagonal MnS NPLs. Comprehensive characterization of the intermediates reveals that this waxing-and-waning shape-evolution process is due to dissolution, redeposition, and intraparticle migration of Cu+ and S2-. Furthermore, in addition to Mn2+, this CE-induced transformation process occurs with Zn2+, Cd2+ and Fe3+. This finding presents a strategy by which to create heterostructured NCs with various morphologies and compositions under mild conditions.
Collapse
Affiliation(s)
- Zhanzhao Li
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| | - Toru Asaka
- Division of Advanced Ceramics, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| |
Collapse
|
3
|
Chen B, Zheng W, Chun F, Xu X, Zhao Q, Wang F. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chem Soc Rev 2023; 52:8374-8409. [PMID: 37947021 DOI: 10.1039/d3cs00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper indium sulfide (CuInS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap with a high absorption coefficient. In attempts to explore their practical applications, nanoscale CuInS2 has been synthesized with crystal sizes down to the quantum confinement regime. The merits of CuInS2 nanocrystals (NCs) include wide emission tunability, a large Stokes shift, long decay time, and eco-friendliness, making them promising candidates in photoelectronics and photovoltaics. Over the past two decades, advances in wet-chemistry synthesis have achieved rational control over cation-anion reactivity during the preparation of colloidal CuInS2 NCs and post-synthesis cation exchange. The precise nano-synthesis coupled with a series of hybridization strategies has given birth to a library of CuInS2 NCs with highly customizable photophysical properties. This review article focuses on the recent development of CuInS2 NCs enabled by advanced synthetic and hybridization techniques. We show that the state-of-the-art CuInS2 NCs play significant roles in optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
5
|
Thiel F, Palencia C, Weller H. Kinetic Analysis of the Cation Exchange in Nanorods from Cu 2-xS to CuInS 2: Influence of Djurleite's Phase Transition Temperature on the Mechanism. ACS NANO 2023; 17:3676-3685. [PMID: 36749683 DOI: 10.1021/acsnano.2c10693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the syntheses of ternary I-III-VI2 compounds, such as CuInS2, it is often difficult to balance three precursor reactivities to achieve the desired size, shape, and atomic composition of nanocrystals. Cation exchange reactions offer an attractive two-step alternative, by producing a binary compound with the desired morphology and incorporating another atomic species postsynthetically. However, the kinetics of such cation exchange reactions, especially for anisotropic nanocrystals, are still not fully understood. Here, we present the cation exchange reaction from Cu-deficient djurleite Cu2-xS nanorods to wurtzite CuInS2, with size and shape retention. With reaction parameters in a broad temperature range between 40 °C and 160 °C, we were able to obtain various intermediates. Djurleite has a bulk phase transition temperature at 93 °C, which influences the cation exchange considerably. Below the phase transition temperature, indium is only incorporated into the surface of the nanorods, while, at temperatures above the phase transition temperature, we observe a Janus-type exchange mechanism and the formation of CuInS2 bands in the djurleite nanorods. The findings suggest that the diffusion above the phase transition temperature is strongly favored along the copper planes of the copper sulfide nanorods over the diffusion through the sulfur planes. This results in a difference of 37 kJ mol-1 in the activation energy of the cation exchange below and above the phase transition temperature.
Collapse
Affiliation(s)
- Felix Thiel
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Cristina Palencia
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Horst Weller
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Fraunhofer-CAN, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Escoda-Torroella M, Moya C, Ruiz-Torres JA, Fraile Rodríguez A, Labarta A, Batlle X. Selective anisotropic growth of Bi 2S 3 nanoparticles with adjustable optical properties. Phys Chem Chem Phys 2023; 25:3900-3911. [PMID: 36648114 DOI: 10.1039/d2cp05437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report on the controlled synthesis and functionalization in two steps of elongated Bi2S3 nanoparticles within a wide range of sizes. First, we show the effect of the temperature and reaction time on the synthesis of two series of nanoparticles by the reaction of thioacetamide with bismuth(III) neodecanoate in the presence of organic surfactants. At 105 °C and long reaction times, nanoneedles of about 45 nm in length containing larger crystallites are obtained, while highly crystalline nanorods of about 30 nm in length are dominant at 165 °C, regardless of the reaction time. The optical properties of both types of nanoparticles show an enhancement of the band gap compared to bulk Bi2S3. This is likely to arise from quantum confinement effects caused by the small particle dimensions relative to the typical exciton size, together with an increase in near-infrared absorption due to the anisotropic particle shape. Second, a ligand exchange approach has been developed to transfer the Bi2S3 nanoparticles to aqueous solutions by grafting dimercaptosuccinic acid onto the surface of the particles. The as-prepared coated nanoparticles show good stability in water, in a wide biological pH range, and in phosphate-buffered saline solutions. Overall, this work highlights the controlled design at all levels - from the inorganic core to the organic surface coating - of elongated Bi2S3 nanoparticles, leading to a tunable optical response by tuning their morphology and size.
Collapse
Affiliation(s)
- Mariona Escoda-Torroella
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Carlos Moya
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - José A Ruiz-Torres
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Arantxa Fraile Rodríguez
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Amílcar Labarta
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Xavier Batlle
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
7
|
Torimoto T, Kameyama T, Uematsu T, Kuwabata S. Controlling Optical Properties and Electronic Energy Structure of I-III-VI Semiconductor Quantum Dots for Improving Their Photofunctions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Abstract
Anisotropic heterostructures of colloidal nanocrystals embed size-, shape-, and composition-dependent electronic structure within variable three-dimensional morphology, enabling intricate design of solution-processable materials with high performance and programmable functionality. The key to designing and synthesizing such complex materials lies in understanding the fundamental thermodynamic and kinetic factors that govern nanocrystal growth. In this review, nanorod heterostructures, the simplest of anisotropic nanocrystal heterostructures, are discussed with respect to their growth mechanisms. The effects of crystal structure, surface faceting/energies, lattice strain, ligand sterics, precursor reactivity, and reaction temperature on the growth of nanorod heterostructures through heteroepitaxy and cation exchange reactions are explored with currently known examples. Understanding the role of various thermodynamic and kinetic parameters enables the controlled synthesis of complex nanorod heterostructures that can exhibit unique tailored properties. Selected application prospects arising from such capabilities are then discussed.
Collapse
Affiliation(s)
- Gryphon A Drake
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 United States
| | - Logan P Keating
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 United States
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 United States
| |
Collapse
|