1
|
Sohoni S, Ghosh I, Nash GT, Jones CA, Lloyd LT, Li BC, Ji KL, Wang Z, Lin W, Engel GS. Optically accessible long-lived electronic biexcitons at room temperature in strongly coupled H- aggregates. Nat Commun 2024; 15:8280. [PMID: 39333466 PMCID: PMC11437198 DOI: 10.1038/s41467-024-52341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
Photon absorption is the first process in light harvesting. Upon absorption, the photon redistributes electrons in the materials to create a Coulombically bound electron-hole pair called an exciton. The exciton subsequently separates into free charges to conclude light harvesting. When two excitons are in each other's proximity, they can interact and undergo a two-particle process called exciton-exciton annihilation. In this process, one electron-hole pair spontaneously recombines: its energy is lost and cannot be harnessed for applications. In this work, we demonstrate the creation of two long-lived excitons on the same chromophore site (biexcitons) at room temperature in a strongly coupled H-aggregated zinc phthalocyanine material. We show that exciton-exciton annihilation is suppressed in these H- aggregated chromophores at fluences many orders of magnitudes higher than solar light. When we chemically connect the same aggregated chromophores to allow exciton diffusion, we observe that exciton-exciton annihilation is switched on. Our findings demonstrate a chemical strategy, to toggle on and off the exciton-exciton annihilation process that limits the dynamic range of photovoltaic devices.
Collapse
Affiliation(s)
- Siddhartha Sohoni
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Indranil Ghosh
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Claire A Jones
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Lawson T Lloyd
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Beiye C Li
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Karen L Ji
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Gregory S Engel
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Timmer D, Gittinger M, Quenzel T, Cadore AR, Rosa BLT, Li W, Soavi G, Lünemann DC, Stephan S, Silies M, Schulz T, Steinhoff A, Jahnke F, Cerullo G, Ferrari AC, De Sio A, Lienau C. Ultrafast Coherent Exciton Couplings and Many-Body Interactions in Monolayer WS 2. NANO LETTERS 2024; 24:8117-8125. [PMID: 38901032 PMCID: PMC11229071 DOI: 10.1021/acs.nanolett.4c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS2 at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS2. Pronounced ultrafast oscillations of the transient optical response of the B exciton are the signature of a coherent 50 meV coupling and coherent population oscillations between the two exciton states. Supported by microscopic semiconductor Bloch equation simulations, these coherent dynamics are rationalized in terms of Dexter-like interactions. Our work sheds light on the role of coherent exciton couplings and many-body interactions in the ultrafast temporal evolution of spin and valley states in TMDs.
Collapse
Affiliation(s)
- Daniel Timmer
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Moritz Gittinger
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Quenzel
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Alisson R. Cadore
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Barbara L. T. Rosa
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Wenshan Li
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Giancarlo Soavi
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Daniel C. Lünemann
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Sven Stephan
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Martin Silies
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Tommy Schulz
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Alexander Steinhoff
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Frank Jahnke
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Antonietta De Sio
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Institut für Physik, 26129 Oldenburg, Germany
| | - Christoph Lienau
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Institut für Physik, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Jeffries WR, Jawaid AM, Vaia RA, Knappenberger KL. Thickness-dependent electronic relaxation dynamics in solution-phase redox-exfoliated MoS2 heterostructures. J Chem Phys 2024; 160:144707. [PMID: 38597312 DOI: 10.1063/5.0200398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Electronic relaxation dynamics of solution-phase redox-exfoliated molybdenum disulfide (MoS2) monolayer and multilayer ensembles are described. MoS2 was exfoliated using polyoxometalate (POM) reductants. This process yields a colloidal heterostructure consisting of MoS2 2D sheet multilayers with surface-bound POM complexes. Using two-dimensional electronic spectroscopy, transient bleaching and photoinduced absorption signals were detected at excitation/detection energies of 1.82/1.87 and 1.82/1.80 eV, respectively. Approximate 100-fs bandgap renormalization (BGR) and subsequent defect- and phonon-mediated relaxation on the picosecond timescale were resolved for several MoS2 thicknesses spanning from 1 to 2 L to ∼20 L. BGR rates were independent of sample thickness and slightly slower than observations for chemical vapor deposition-grown MoS2 monolayers. However, defect-mediated relaxation accelerated ∼10-fold with increased sample thicknesses. The relaxation rates increased from 0.33 ± 0.05 to 1.2 ± 0.1 and 3.1 ± 0.4 ps-1 for 1-2 L, 3-4 L, and 20 L fractions. The thicknesses-dependent relaxation rates for POM-MoS2 heterostructures were modeled using a saturating exponential function that showed saturation at thirteen MoS2 layers. The results suggest that the increased POM surface coverage leads to larger defect density in the POM-MoS2 heterostructure. These are the first descriptions of the influence of sample thickness on electronic relaxation rates in solution-phase redox-exfoliated POM-MoS2 heterostructures. Outcomes of this work are expected to impact the development of solution-phase exfoliation of 2D metal-chalcogenide heterostructures.
Collapse
Affiliation(s)
- William R Jeffries
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ali M Jawaid
- Air Force Research Laboratory, 2941 Hobson Way, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Richard A Vaia
- Air Force Research Laboratory, 2941 Hobson Way, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Upadhyay B, Sharma R, Maity D, Narayan TN, Pal SK. Ultrafast carrier dynamics in vanadium-doped MoS 2 alloys. NANOSCALE 2023; 15:16344-16353. [PMID: 37786388 DOI: 10.1039/d3nr03337f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Substitutional doping is a most promising approach to manipulate the electronic and optical properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs). In addition to inducing magnetism, vanadium (V) doping can lead to semiconductor-metal transition in TMDCs. However, the dynamics of charge carriers that governs the optoelectronic properties of doped TMDCs has been rarely revealed. In this work, we have investigated the dynamics of photocarriers in pristine and V-doped monolayer (ML) MoS2. Comparison of the transient absorption (TA) spectra of ML MoS2 with lightly (≤1%) and heavily (3.62%) V-doped MoS2 infers the induction of additional energy states in the doped materials giving rise to new low energy bleach features in the TA spectra. The quasiparticle band structure of MoS2 is found to disappear at sufficiently high V doping due to the presence of impurity bands. An attempt has also been made to study the manipulation of the carrier lifetime with V doping in MoS2. Our TA kinetic measurements suggest that the decay kinetics of the carriers becomes slower with increasing doping percentage and at a higher doping level the carriers survive for a much longer time compared to pristine MoS2. Furthermore, we have identified a new electronic transition (NET) in heavily V-doped MoS2 at high pump fluences.
Collapse
Affiliation(s)
- Bhuvan Upadhyay
- School of Physical Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India.
- Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Rahul Sharma
- Tata Institute of Fundamental Research-Hyderabad, Sy. No. 36/P, Gopanapally Village, Serilingampally Mandal, Hyderabad-500046, India
- Department of Physics and Astronomy, Uppsala University, 75236, Uppsala, Sweden
| | - Dipak Maity
- Tata Institute of Fundamental Research-Hyderabad, Sy. No. 36/P, Gopanapally Village, Serilingampally Mandal, Hyderabad-500046, India
| | - Tharangattu N Narayan
- Tata Institute of Fundamental Research-Hyderabad, Sy. No. 36/P, Gopanapally Village, Serilingampally Mandal, Hyderabad-500046, India
| | - Suman Kalyan Pal
- School of Physical Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India.
- Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
5
|
Deckert T, Vanderhaegen A, Brida D. Sub-8-fs pulses in the visible to near-infrared by a degenerate optical parametric amplifier. OPTICS LETTERS 2023; 48:4496-4499. [PMID: 37656537 DOI: 10.1364/ol.498291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
This work presents a single-stage optical parametric amplifier (OPA) operating at degeneracy (DOPA) and pumped by the third harmonic of a Yb:KGW laser system. This DOPA exploits the broad amplification bandwidth that occurs with type-I phase-matching in β-barium borate (BBO) when signal and idler overlap in the spectrum. The output pulses span from 590 to 780 nm (1.59-2.10 eV) with 7.75-fs duration after compression. Ultrashort pulses with similar bandwidths in this spectral window complement the existing array of optical parametric amplifiers that cover either the visible or the near-IR spectral regions with sub-10-fs pulses. This source of ultrashort optical pulses will enable the application of sophisticated spectroscopy techniques to the study of electronic coherences and energy migration pathways in biological, chemical, and condensed matter systems.
Collapse
|
6
|
Gross N, Kuhs CT, Ostovar B, Chiang WY, Wilson KS, Volek TS, Faitz ZM, Carlin CC, Dionne JA, Zanni MT, Gruebele M, Roberts ST, Link S, Landes CF. Progress and Prospects in Optical Ultrafast Microscopy in the Visible Spectral Region: Transient Absorption and Two-Dimensional Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14557-14586. [PMID: 37554548 PMCID: PMC10406104 DOI: 10.1021/acs.jpcc.3c02091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Indexed: 08/10/2023]
Abstract
Ultrafast optical microscopy, generally employed by incorporating ultrafast laser pulses into microscopes, can provide spatially resolved mechanistic insight into scientific problems ranging from hot carrier dynamics to biological imaging. This Review discusses the progress in different ultrafast microscopy techniques, with a focus on transient absorption and two-dimensional microscopy. We review the underlying principles of these techniques and discuss their respective advantages and applicability to different scientific questions. We also examine in detail how instrument parameters such as sensitivity, laser power, and temporal and spatial resolution must be addressed. Finally, we comment on future developments and emerging opportunities in the field of ultrafast microscopy.
Collapse
Affiliation(s)
- Niklas Gross
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Christopher T. Kuhs
- Army
Research Laboratory-South, U.S. Army DEVCOM, Houston, Texas 77005, United States
| | - Behnaz Ostovar
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei-Yi Chiang
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Kelly S. Wilson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tanner S. Volek
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary M. Faitz
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Claire C. Carlin
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Martin Gruebele
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sean T. Roberts
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephan Link
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Zou J, Zhu R, Wang J, Meng H, Wang Z, Chen H, Weng YX. Coherent Phonon-Mediated Many-Body Interaction in Monolayer WSe 2. J Phys Chem Lett 2023; 14:4657-4665. [PMID: 37167104 DOI: 10.1021/acs.jpclett.3c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Due to the strong Coulomb interaction, the optical and electrical properties of two-dimensional transition metal dichalcogenides (TMDCs) are greatly determined by the emergence of many-body complexes such as excitons or trions. To fully realize the potential functionalities of these atomically thin materials, a comprehensive understanding of their many-body interaction mechanism is essential. Here, using the advanced femtosecond two-dimensional electronic spectroscopy technique combined with broadband transient absorption spectroscopy, a strong electron-exciton coupling effect in monolayer WSe2 following the ultrafast photoexcitation is revealed. We demonstrate that such many-body complexes can be generated effectively through the band-edge optical excitation, with a ∼1.5 ps stabilization process. The coherent optical phonon plays a dominant role in this electron-exciton interaction, and the coherence of the electron (exciton)-phonon coupling can last for ∼4.5 ps. This finding offers new insight into the formation mechanism of photoinduced many-body complexes in TMDCs.
Collapse
Affiliation(s)
- Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiayu Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanting Meng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Brosseau P, Seiler H, Palato S, Sonnichsen C, Baker H, Socie E, Strandell D, Kambhampati P. Perturbed free induction decay obscures early time dynamics in two-dimensional electronic spectroscopy: The case of semiconductor nanocrystals. J Chem Phys 2023; 158:084201. [PMID: 36859087 DOI: 10.1063/5.0138252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Two-dimensional electronic spectroscopy (2DES) has recently been gaining popularity as an alternative to the more common transient absorption spectroscopy due to the combination of high frequency and time resolution of 2DES. In order to advance the reliable analysis of population dynamics and to optimize the time resolution of the method, one has to understand the numerous field matter interactions that take place at an early and negative time. These interactions have historically been discussed in one-dimensional spectroscopy as coherent artifacts and have been assigned to both resonant and non-resonant system responses during or before the pulse overlap. These coherent artifacts have also been described in 2DES but remain less well-understood due to the complexity of 2DES and the relative novelty of the method. Here, we present 2DES results in two model nanocrystal samples, CdSe and CsPbI3. We demonstrate non-resonant signals due to solvent response during the pulse overlap and resonant signals, which we assign to perturbed free induction decay (PFID), both before and during the pulse overlap. The simulations of the 2DES response functions at early and negative time delays reinforce the assignment of the negative time delay signals to PFID. Modeling reveals that the PFID signals will severely distort the initial picture of the resonant population dynamics. By including these effects in models of 2DES spectra, one is able to push forward the extraction of early time dynamics in 2DES.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Hélène Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Samuel Palato
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Colin Sonnichsen
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Harry Baker
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Etienne Socie
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
9
|
Kunin A, Chernov S, Bakalis J, Li Z, Cheng S, Withers ZH, White MG, Schönhense G, Du X, Kawakami RK, Allison TK. Momentum-Resolved Exciton Coupling and Valley Polarization Dynamics in Monolayer WS_{2}. PHYSICAL REVIEW LETTERS 2023; 130:046202. [PMID: 36763432 DOI: 10.1103/physrevlett.130.046202] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Using time- and angle-resolved photoemission, we present momentum- and energy-resolved measurements of exciton coupling in monolayer WS_{2}. We observe strong intravalley coupling between the B_{1s} exciton and A_{n>1} states. Our measurements indicate that the dominant valley depolarization mechanism conserves the exciton binding energy and momentum. While this conservation is consistent with Coulomb exchange-driven valley depolarization, we do not observe a momentum or energy dependence to the depolarization rate as would be expected for the exchange-based mechanism.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sergey Chernov
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jin Bakalis
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Ziling Li
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shuyu Cheng
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zachary H Withers
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Michael G White
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Gerd Schönhense
- Johannes Gutenberg-Universität, Institut für Physik, D-55099 Mainz, Germany
| | - Xu Du
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Roland K Kawakami
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas K Allison
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|