1
|
Hong T, Zhou Q, Liu Y, Ji Y, Tan S, Zhou W, Cai Z. Preparation of DNA nanoflower-modified capillary silica monoliths for chiral separation. Mikrochim Acta 2024; 191:584. [PMID: 39245760 DOI: 10.1007/s00604-024-06663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Innovative chiral capillary silica monoliths (CSMs) were developed based on DNA nanoflowers (DNFs). Baseline separation of enantiomers such as atenolol, tyrosine, histidine, and nefopam was achieved by using DNF-modified CSMs, and the obtained resolution value was higher than 1.78. To further explore the effect of DNFs on enantioseparation, different types of chiral columns including DNA strand containing the complementary sequence of the template (DCT)-modified CSMs, DNF2-modified CSMs, and DNF3-modified CSMs were prepared as well. It was observed that DNF-modified CSMs displayed better chiral separation ability compared with DCT-based columns. The intra-day and inter-day repeatability of model analytes' retention time and resolution kept desirable relative standard deviation values of less than 8.28%. DNF2/DNF3-modified CSMs were able to achieve baseline separation of atenolol, propranolol, 2'-deoxyadenosine, and nefopam enantiomers. Molecular docking simulations were performed to investigate enantioselectivity mechanisms of DNA sequences for enantiomers. To indicate the successful construction of DNFs and DNF-modified CSMs, various charaterization approaches including scanning electron microscopy, agarose gel electrophoresis, dynamic light scattering analysis, electroosmotic flow, and Fourier-transform infrared spectroscopy were utilized. Moreover, the enantioseparation performance of DNF-modified CSMs was characterized in terms of sample volume, applied voltage, and buffer concentration. This work paves the way to applying DNF-based capillary electrochromatography microsystems for chiral separation.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou, SIP 215000, China
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, 213100, Jiangsu, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, 213100, Jiangsu, China.
| |
Collapse
|
2
|
Hong T, Zhou Q, Liu Y, Guan J, Zhou W, Tan S, Cai Z. From individuals to families: design and application of self-similar chiral nanomaterials. MATERIALS HORIZONS 2024; 11:3975-3995. [PMID: 38957038 DOI: 10.1039/d4mh00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Establishing an intimate relationship between similar individuals is the beginning of self-extension. Various self-similar chiral nanomaterials can be designed using an individual-to-family approach, accomplishing self-extension. This self-similarity facilitates chiral communication, transmission, and amplification of synthons. We focus on describing the marriage of discrete cages to develop self-similar extended frameworks. The advantages of utilizing cage-based frameworks for chiral recognition, enantioseparation, chiral catalysis and sensing are highlighted. To further promote self-extension, fractal chiral nanomaterials with self-similar and iterated architectures have attracted tremendous attention. The beauty of a fractal family tree lies in its ability to capture the complexity and interconnectedness of a family's lineage. As a type of fractal material, nanoflowers possess an overarching importance in chiral amplification due to their large surface-to-volume ratio. This review summarizes the design and application of state-of-the-art self-similar chiral nanomaterials including cage-based extended frameworks, fractal nanomaterials, and nanoflowers. We hope this formation process from individuals to families will inherit and broaden this great chirality.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiaqi Guan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 215000, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| |
Collapse
|
3
|
Hong T, Zhou W, Tan S, Cai Z. A cooperation tale of biomolecules and nanomaterials in nanoscale chiral sensing and separation. NANOSCALE HORIZONS 2023; 8:1485-1508. [PMID: 37656443 DOI: 10.1039/d3nh00133d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The cooperative relationship between biomolecules and nanomaterials makes up a beautiful tale about nanoscale chiral sensing and separation. Biomolecules are considered a fabulous chirality 'donor' to develop chiral sensors and separation systems. Nature has endowed biomolecules with mysterious chirality. Various nanomaterials with specific physicochemical attributes can realize the transmission and amplification of this chirality. We focus on highlighting the advantages of combining biomolecules and nanomaterials in nanoscale chirality. To enhance the sensors' detection sensitivity, novel cooperation approaches between nanomaterials and biomolecules have attracted tremendous attention. Moreover, innovative biomolecule-based nanocomposites possess great importance in developing chiral separation systems with improved assay performance. This review describes the formation of a network based on nanomaterials and biomolecules mainly including DNA, proteins, peptides, amino acids, and polysaccharides. We hope this tale will record the perpetual relation between biomolecules and nanomaterials in nanoscale chirality.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, Jiangsu 213100, China
| |
Collapse
|
4
|
Chen B, Song L, Yuan Y, Liu X, Guo Z, Gu Y, Lou Z, Liu Y, Zhang C, Li C, Guo C. Chirality-Dependent Tumor Phototherapy Using Amino Acid-Engineered Chiral Phosphorene. ACS APPLIED MATERIALS & INTERFACES 2023; 15:651-661. [PMID: 36591814 DOI: 10.1021/acsami.2c19291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phosphorene, also known as black phosphorus nanosheet (BPNS), has been investigated as a nanoagent for tumor therapy. However, promoting its intracellular accumulation while preventing the cytoplasmic decomposition remains challenging. Herein, for the first time, we propose a chiral BPNS designed through surface engineering based on amino acids with high biocompatibility and an abundant source for application in chirality-dependent tumor phototherapy based on its intracellular metabolism. The advantage of using cysteine (Cys) over other amino acids was that its d, l, or dl-form could efficiently work as the chirality inducer to modify the BPNS through electrostatic interaction and prevent alterations in the intrinsic properties of the BPNS. In particular, d-Cys-BPNS displayed an approximately threefold cytotoxic effect on tumor cells compared with l-Cys-BPNS, demonstrating a chirality-dependent therapy behavior. d-Cys-BPNS not only promoted high intracellular content but also showed resistance to cytoplasmic decomposition. Cys-engineered BPNS also demonstrated chirality-dependent phototherapy effects on tumor-bearing mice, in proximity to the results in vitro. Chiral engineering is expected to open new avenues that could promote the use of BPNS in tumor phototherapy and boost chiral nanomedicine.
Collapse
Affiliation(s)
- Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Luping Song
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Ying Yuan
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Xin Liu
- The Third School of Clinical Medical, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing210028, P. R. China
| | - Zhanhang Guo
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing210096, P. R. China
| | - Yu Gu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Zhichao Lou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yang Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing210096, P. R. China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Changming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| |
Collapse
|
5
|
Wang J, Wang C, Xu JJ, Xia XH, Chen HY. Emerging advances in plasmonic nanoassemblies for biosensing and cell imaging. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G. Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications. ACS NANO 2022; 16:19789-19809. [PMID: 36454684 DOI: 10.1021/acsnano.2c08145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.
Collapse
Affiliation(s)
- Shenli Wang
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Xing Liu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Jie Chen
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Weiwei Fu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Yuan Zhang
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, P. R. China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Lee BHJ, Arya G. Assembly mechanism of surface-functionalized nanocubes. NANOSCALE 2022; 14:3917-3928. [PMID: 35225318 DOI: 10.1039/d1nr07995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Faceted nanoparticles can be used as building blocks to assemble nanomaterials with exceptional optical and catalytic properties. Recent studies have shown that surface functionalization of such nanoparticles with organic molecules, polymer chains, or DNA can be used to control the separation distance and orientation of particles within their assemblies. In this study, we computationally investigate the mechanism of assembly of nanocubes grafted with short-chain molecules. Our approach involves computing the interaction free energy landscape of a pair of such nanocubes via Monte Carlo simulations and using the Dijkstra algorithm to determine the minimum free energy pathway connecting key states in the landscape. We find that the assembly pathway of nanocubes is very rugged involving multiple energy barriers and metastable states. Analysis of nanocube configurations along the pathway reveals that the assembly mechanism is dominated by sliding motion of nanocubes relative to each other punctuated by their local dissociation at grafting points involving lineal separation and rolling motions. The height of energy barriers between metastable states depends on factors such as the interaction strength and surface roughness of the nanocubes and the steric repulsion from the grafts. These results imply that the observed assembly configuration of nanocubes depends not only on their globally stable minimum free energy state but also on the assembly pathway leading to this state. The free energy landscapes and assembly pathways presented in this study along with the proposed guidelines for engineering such pathways should be useful to researchers aiming to achieve uniform nanostructures from self-assembly of faceted nanoparticles.
Collapse
Affiliation(s)
- Brian Hyun-Jong Lee
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.
| | - Gaurav Arya
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|