1
|
Wu Y, Wang Y, Bao D, Deng X, Zhang S, Yu-Chun L, Ke S, Liu J, Liu Y, Wang Z, Ham P, Hanna A, Pan J, Hu X, Li Z, Zhou J, Wang C. Emerging probing perspective of two-dimensional materials physics: terahertz emission spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:146. [PMID: 38951490 PMCID: PMC11217405 DOI: 10.1038/s41377-024-01486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
Terahertz (THz) emission spectroscopy (TES) has emerged as a highly effective and versatile technique for investigating the photoelectric properties of diverse materials and nonlinear physical processes in the past few decades. Concurrently, research on two-dimensional (2D) materials has experienced substantial growth due to their atomically thin structures, exceptional mechanical and optoelectronic properties, and the potential for applications in flexible electronics, sensing, and nanoelectronics. Specifically, these materials offer advantages such as tunable bandgap, high carrier mobility, wideband optical absorption, and relatively short carrier lifetime. By applying TES to investigate the 2D materials, their interfaces and heterostructures, rich information about the interplay among photons, charges, phonons and spins can be unfolded, which provides fundamental understanding for future applications. Thus it is timely to review the nonlinear processes underlying THz emission in 2D materials including optical rectification, photon-drag, high-order harmonic generation and spin-to-charge conversion, showcasing the rich diversity of the TES employed to unravel the complex nature of these materials. Typical applications based on THz emissions, such as THz lasers, ultrafast imaging and biosensors, are also discussed. Step further, we analyzed the unique advantages of spintronic terahertz emitters and the future technological advancements in the development of new THz generation mechanisms leading to advanced THz sources characterized by wide bandwidth, high power and integration, suitable for industrial and commercial applications. The continuous advancement and integration of TES with the study of 2D materials and heterostructures promise to revolutionize research in different areas, including basic materials physics, novel optoelectronic devices, and chips for post-Moore's era.
Collapse
Affiliation(s)
- Yifei Wu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yuqi Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Di Bao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiaonan Deng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Simian Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Lin Yu-Chun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Shengxian Ke
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jianing Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yingjie Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zeli Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Pingren Ham
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Andrew Hanna
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jiaming Pan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xinyue Hu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zhengcao Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Chen Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China.
| |
Collapse
|
2
|
Zou Y, Zhang Z, Wang C, Cheng Y, Wang C, Sun K, Zhang W, Suo P, Lin X, Ma H, Leng Y, Liu W, Du J, Ma G. Charge Transfer in Graphene-MoS 2 Vertical Heterostructures Tuned by Stacking Order and Substrate-Introduced Electric Field. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30589-30597. [PMID: 38814136 DOI: 10.1021/acsami.4c05511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vertical van der Waals heterostructures composed of graphene (Gr) and transition metal dichalcogenides (TMDs) have created a fascinating platform for exploring optical and electronic properties in the two-dimensional limit. Numerous studies have focused on Gr/TMDs heterostructures to elucidate the underlying mechanisms of charge-energy transfer, quasiparticle formation, and relaxation following optical excitation. Nevertheless, a comprehensive understanding of interfacial charge separation and subsequent dynamics in graphene-based heterostructures remains elusive. Here, we have investigated the carrier dynamics of Gr-MoS2 heterostructures (including Gr/MoS2 and MoS2/Gr stacking sequences) grown on a fused silica substrate under varying photoexcitation energies by comprehensive ultrafast means, including time-resolved terahertz (THz) spectroscopy, THz emission spectroscopy, and transient absorption spectroscopy. Our findings highlight the impact of the substrate electric field on the efficiency of modulating the interfacial charge transfer (CT). Specifically, the optical excitation in Gr/MoS2 generates thermal electron injection from the graphene layer into the MoS2 layer with photon energy well below A-exciton of MoS2, whereas the interfacial CT in the MoS2/Gr is blocked by the electric field of the substrate. In turn, photoexcitation of the A exciton above leads to hole transfer from MoS2 to graphene, which occurs for both Gr-MoS2 heterostructures with opposite stacking orders, resulting in the opposite orientations of the interfacial photocurrent, as directly demonstrated by the out-of-phase THz emission. Moreover, we demonstrate that the recombination time of interfacial exciton is approximately ∼18 ps, whereas the defect-assisted interfacial recombination occurs on a time scale of ∼ns. This study provides valuable insights into the interplay between interfacial CT, substrate effects, and defect engineering in Gr-TMDs heterostructures, thereby facilitating the development of next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Yuqing Zou
- Department of Physics, Shanghai University, Shanghai 200444, China
| | - Zeyu Zhang
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Chunwei Wang
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Cheng
- Department of Physics, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Department of Physics, Shanghai University, Shanghai 200444, China
| | - Kaiwen Sun
- Department of Physics, Shanghai University, Shanghai 200444, China
| | - Wenjie Zhang
- Department of Physics, Shanghai University, Shanghai 200444, China
| | - Peng Suo
- Department of Physics, Shanghai University, Shanghai 200444, China
- Institute for quantum science and technology, Shanghai University, Shanghai 200444, China
| | - Xian Lin
- Department of Physics, Shanghai University, Shanghai 200444, China
| | - Hong Ma
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Juan Du
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Guohong Ma
- Department of Physics, Shanghai University, Shanghai 200444, China
- Institute for quantum science and technology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Yang J, Xie J, Jiang S, Zhang K, Li Q, Wang Y, Wang T, Su F. Extraordinary Polarization and Thickness Dependences of Photocarrier Dynamics in PdSe 2 Ribbons. J Phys Chem Lett 2024; 15:4276-4285. [PMID: 38607948 DOI: 10.1021/acs.jpclett.4c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Pentagonal palladium diselenide (PdSe2) stands out for its exceptional optoelectronic properties, including high carrier mobility, tunable bandgap, and anisotropic electronic and optical responses. Herein, we systematically investigate photocarrier dynamics in PdSe2 ribbons using polarization-resolved optical pump-probe spectroscopy. In thin PdSe2 ribbons with a semiconductor phase, the photocarrier dynamics are found to be dominated by intraband hot-carrier cooling, interband recombination, and the exciton effect, showing weak crystalline orientation dependences. Conversely, in thick semimetal-phase PdSe2 ribbons, the photocarrier relaxations governed by the electron-optical/acoustic phonon scattering strongly depend on the sample orientation, albeit with a degradation in in-plane anisotropy following hot-carrier cooling. Furthermore, we analyze the correlations between photocarrier dynamics and anisotropic energy dispersions of electronic structures across a wide range in k space, as well as the contributions from the anisotropic electron-phonon couplings. Our study provides crucial insights for developing polarization-sensitive photoelectronic devices based on PdSe2.
Collapse
Affiliation(s)
- Jin Yang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiafeng Xie
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Shaolong Jiang
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| | - Kai Zhang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Qi Li
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Yunfeng Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Tianwu Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Fuhai Su
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Zhang P, Liang Q, Zhou Q, Chen J, Li M, Deng Y, Liang W, Zhang L, Zhang Q, Gu L, Ge C, Jin KJ, Zhang C, Yang G. High-performance terahertz modulators induced by substrate field in Te-based all-2D heterojunctions. LIGHT, SCIENCE & APPLICATIONS 2024; 13:67. [PMID: 38443377 PMCID: PMC10915160 DOI: 10.1038/s41377-024-01393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 03/07/2024]
Abstract
High-performance active terahertz modulators as the indispensable core components are of great importance for the next generation communication technology. However, they currently suffer from the tradeoff between modulation depth and speed. Here, we introduce two-dimensional (2D) tellurium (Te) nanofilms with the unique structure as a new class of optically controlled terahertz modulators and demonstrate their integrated heterojunctions can successfully improve the device performances to the optimal and applicable levels among the existing all-2D broadband modulators. Further photoresponse measurements confirm the significant impact of the stacking order. We first clarify the direction of the substrate-induced electric field through first-principles calculations and uncover the unusual interaction mechanism in the photoexcited carrier dynamics associated with the charge transfer and interlayer exciton recombination. This advances the fundamental and applicative research of Te nanomaterials in high-performance terahertz optoelectronics.
Collapse
Affiliation(s)
- Pujing Zhang
- Department of Physics, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, 100048, China
| | - Qihang Liang
- Department of Physics, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, 100048, China
| | - Qingli Zhou
- Department of Physics, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, 100048, China.
| | - Jinyu Chen
- Department of Physics, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, 100048, China
| | - Menglei Li
- Department of Physics, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, 100048, China
| | - Yuwang Deng
- Department of Physics, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, 100048, China
| | - Wanlin Liang
- Department of Physics, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, 100048, China
| | - Liangliang Zhang
- Department of Physics, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, 100048, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Department of Materials Science and Engineering, Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Tsinghua University, Beijing, 100084, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Kui-Juan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Cunlin Zhang
- Department of Physics, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, 100048, China
| | - Guozhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
5
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
6
|
Wu L, Su F, Liu T, Liu GQ, Li Y, Ma T, Wang Y, Zhang C, Yang Y, Yu SH. Phosphorus-Doped Single-Crystalline Quaternary Sulfide Nanobelts Enable Efficient Visible-Light Photocatalytic Hydrogen Evolution. J Am Chem Soc 2022; 144:20620-20629. [DOI: 10.1021/jacs.2c07313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liang Wu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| | - Fuhai Su
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China
| | - Tian Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| | - Guo-Qiang Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| | - Yi Li
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| | - Tao Ma
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| | - Yunfeng Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China
| | - Chong Zhang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| | - Yuan Yang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|