1
|
Jiang C, Meng Z. Natural shellac-based microcapsules as lipase carriers for recyclable efficient Pickering interfacial biocatalysis. Food Chem 2024; 460:140466. [PMID: 39032294 DOI: 10.1016/j.foodchem.2024.140466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Enzyme is an important class of catalyst. However, the efficiency of enzyme-catalyzed reactions is constrained by the limited contact between the enzyme and its substrate. In this study, to overcome this challenge, lipase-loaded microcapsules were prepared from natural shellac and nanoparticles using the emulsion template method. These microcapsules can perform dual roles as stabilizers and enzyme carriers to construct a water-in-oil Pickering interfacial biocatalytic system. The results showed that the hydrolytic conversion of the microcapsules could reach 90% within 20 min, which was significantly higher than that of the traditional biphasic system. The catalytic activity was influenced by the oil-to-water volume ratio and the microcapsule content. The microcapsules remained highly catalytic efficiency even after storage for three months or seven cycles of reuse. These microcapsules were prepared without the use of any cross-linkers or harsh solvents. This green and efficient catalytic system has great application prospects in the food industry.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Chen Y, Zhu Z, Shi K, Jiang Z, Guan C, Zhang L, Yang T, Xie F. Shellac-based materials: Structures, properties, and applications. Int J Biol Macromol 2024; 279:135102. [PMID: 39197605 DOI: 10.1016/j.ijbiomac.2024.135102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Shellac stands out among natural polymers as the sole animal-derived resin, boasting a complex polyester composition comprising polyhydroxy long-chain fatty acids and sesquiterpene acids. Its unique attributes include biocompatibility, non-toxicity, distinctive amphiphilicity, superb film-forming and adhesive properties, excellent dielectric properties, rapid drying, and solubility in alkaline solutions while resisting acidic ones. These exceptional qualities have propelled shellac beyond its traditional role as a varnish and decorative material, positioning it as a viable option for diverse applications such as food packaging, pharmaceutical formulations, electronic devices, fiber dyeing, and wood restoration. Furthermore, shellac serves as a crucial carbon source for graphene materials. This review comprehensively explores shellac's contributions to prolonging food shelf life, enhancing the carbon sourcing of graphene materials, facilitating the delivery of active substances, boosting the performance of organic field-effect transistors, enabling environmentally friendly textile dyeing, and providing protective coatings for wood. Additionally, it delves into the current limitations and future directions of shellac's applications. By disseminating this knowledge, we aim to deepen researchers' comprehension of shellac and inspire further exploration, thereby fostering sustainable advancements across various industries.
Collapse
Affiliation(s)
- Ying Chen
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Zhu Zhu
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Kunbo Shi
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Zhiyao Jiang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Chengran Guan
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China; Jiangsu Dairy Biotechnology Engineering Research Center, Yangzhou, Jiangsu 225127, China
| | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China.
| | - Tao Yang
- School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
3
|
Hao Y, Li S, Guo X, Fang M, Liu X, Gong Z. Preparation of shellac nanoparticles-chitosan complexes stabilized Pickering emulsion gels and its application in β-carotene delivery. Int J Biol Macromol 2024; 281:136583. [PMID: 39414194 DOI: 10.1016/j.ijbiomac.2024.136583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Shellac nanoparticles (SNPs)-based Pickering emulsion gels show promise as delivery carriers but face challenges due to poor emulsifying properties. This study aimed to fabricate stable emulsion gels using SNPs and chitosan (CS) complexes, creating a β-carotene delivery system. The effects of oil phase fractions, emulsifier concentrations and SNPs/CS ratios on rheological properties and the structural properties of emulsion were investigated. The formation of SNPs/CS complexes was through hydrogen bonding and electrostatic interactions. By adjusting the SNPs/CS ratio to 1/0.33, the contact angle of the complexes was optimized to approximately 90°. SNPs/CS complexes served dual roles as emulsifiers and gelling agents in the emulsion gels. Notably, the gel strength (storage modulus) of the emulsion gels remained unchanged after the encapsulation of β-carotene. Emulsion gels with SNPs/CS (1/0.25) complexes showed the highest β-carotene bioaccessibility at 80.4 %. Furthermore, this system could expand the use of shellac-based emulsion gels in food applications.
Collapse
Affiliation(s)
- Yacheng Hao
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National Engineering Research Center of Grain Storage and Logistics, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Sai Li
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xiao Guo
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National Engineering Research Center of Grain Storage and Logistics, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National Engineering Research Center of Grain Storage and Logistics, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National Engineering Research Center of Grain Storage and Logistics, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National Engineering Research Center of Grain Storage and Logistics, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
4
|
Ma J, Liu Y, Xu J, Chen Y, Liu L, Zhang H. An insect lac blanket-mimetic and degradable shellac hydrogel/chitosan packaging film with controllable gas permeation for fresh-cut vegetables preservation. Int J Biol Macromol 2024; 275:133131. [PMID: 38945721 DOI: 10.1016/j.ijbiomac.2024.133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Fresh-cut products are extremely perishable due to the processing operations, and the atmosphere environment, especially CO2, O2 and H2O, could profoundly affect their shelf life. Herein, an insect "lac blanket"-mimetic and facile strategy was proposed for fresh-cut vegetables preservation, employing porous shellac hydrogel microparticles as gas "switches" in chitosan film to regulate CO2, O2 and H2O vapor permeability. Thus, the shellac hydrogel/chitosan hybrid film presented the controllable and wide range of gas permeability, compared with the chitosan film. The shellac-COOH nanoscale vesicles aggregated to form shellac hydrogel network via hydrophobic binding. The shellac hydrogel microparticles played a certain lubricating effect on the hybrid film casting solution. The hydrogen bond network between shellac hydrogel and chitosan contributed to the excellent mechanical properties of the hybrid film. The hybrid film also exhibited remarkable water-resistant, antifogging properties, optical transparency and degradability. The hybrid packaging films prepared through this strategy could adjust the internal gas (CO2, O2, H2O and ethylene) contents within the packages, and further exhibited admirable preservation performance on three fresh-cut vegetables with different respiratory metabolisms. This gas permeation-controlled strategy has great potential in fresh food preservation and various other applications that need a modified atmosphere.
Collapse
Affiliation(s)
- Jinju Ma
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China; Nanjing Forestry University, Nanjing 210037, China
| | - Yupeng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Juan Xu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China; Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Youqing Chen
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China.
| | - Lanxiang Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China; Research Center of Engineering and Technology of Characteristic Forest Resources, National Forestry and Grassland Administration, Kunming 650233, China
| | - Hong Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China.
| |
Collapse
|
5
|
Yao X, Zhu Y, Chen H, Xiao H, Wang Y, Zhen H, Tan C. Shellac-based delivery systems for food bioactive compounds. Int J Biol Macromol 2024; 271:132623. [PMID: 38845255 DOI: 10.1016/j.ijbiomac.2024.132623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Shellac is a natural resin featuring some attractive properties such as amphiphilicity, pH responsiveness, biocompatibility, and biodegradability. There has been increasing interest in employing shellac for controlled delivery of food bioactive compounds. This review outlines the recent advances in different types of shellac-based delivery systems, including nanoparticles, zein-shellac particles, hydrogels, nanofibers, and nanomicelles. The preparation method, formation mechanism, structure, and delivery performance are investigated. These systems could improve the stability and shelf-life of bioactive compounds, allow for targeted release at the small intestine or colon site, and increase bioavailability. The deficiencies and challenges of each of the systems are also discussed. The promising results in this review could guide future trends in more efficient shellac-based delivery platforms for functional food applications.
Collapse
Affiliation(s)
- Xueqing Yao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yubo Zhu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Huiyun Chen
- Institute of Agricultural Processing Research, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongmin Zhen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
6
|
Li SF, Hu TG, Jin YB, Wu H. Fabrication and characterization of shellac nanofibers with colon-targeted delivery of quercetin and its anticancer activity. Int J Biol Macromol 2024; 265:130789. [PMID: 38479668 DOI: 10.1016/j.ijbiomac.2024.130789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
In this study, the feasibility of shellac nanofibers as carrier system for colonic delivery of quercetin was evaluated. Firstly, the nanofibers without and with different amounts (2.5 %, 5.0 %, and 7.5 %) of quercetin were fabricated using pure shellac as a carrier by electrospinning. The morphology of nanofibers was bead-shape confirmed by SEM. FTIR, XRD, and DSC analysis showed that quercetin was encapsulated into shellac nanofibers, forming an amorphous complex. The molecular docking simulation indicated quercetin bound well to shellac through hydrogen bonding and van der Waals forces. These nanofibers had higher thermal stability than pure quercetin, and their surface wettability exhibited a pH-responsive behavior. The loading capacity of quercetin varied from 2.25 % to 6.84 % with the increased amount of quercetin, and it affected the stability of nanofibers in food simulants by measuring the release profiles of quercetin. The shellac nanofibers had high gastrointestinal stability, with a minimum quercetin release of 16.87 % in simulated digestive fluids, while the remaining quercetin was delivered to the colon and was released gradually. Moreover, the nanofibers exerted enhanced anticancer activity against HCT-116 cells by arresting cell cycle in G0/G1 phase and inducing cell apoptosis. Overall, shellac nanofibers are promising materials for colon-targeted delivery of active compounds.
Collapse
Affiliation(s)
- Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510640, China
| | - Yuan-Bao Jin
- Ji'an College, Modern Agriculture and Forestry Engineering College, Jian 343000, China.
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China.
| |
Collapse
|
7
|
Chen Y, Chen X, Luo S, Chen T, Ye J, Liu C. Complex bio-nanoparticles assembled by a pH-driven method: environmental stress stability and oil-water interfacial behavior. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1971-1983. [PMID: 37897157 DOI: 10.1002/jsfa.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Protein-based nanoparticles have gained considerable interest in recent years due to their biodegradability, biocompatibility, and functional properties. However, nanoparticles formed from hydrophobic proteins are prone to instability under environmental stress, which restricts their potential applications. It is therefore of great importance to develop green approaches for the fabrication of hydrophobic protein-based nanoparticles and to improve their physicochemical performance. RESULTS Gliadin/shellac complex nanoparticles (168.87 ~ 403.67 nm) with various gliadin/shellac mass ratios (10:0 ~ 5:5) were prepared using a pH-driven approach. In comparison with gliadin nanoparticles, complex nanoparticles have shown enhanced stability against neutral pH, ions, and boiling. They remained stable under neutral conditions at NaCl concentrations ranging from 0 to 100 mmol L-1 and even when boiled at 100 °C for 90 min. These nanoparticles were capable of effectively reducing oil-water interfacial tension (5 ~ 11 mNm-1 ) but a higher amount of shellac in the nanoparticles compromised their ability to lower interfacial tension. Moreover, the wettability of the nanoparticles changed as the gliadin/shellac mass ratio changed, leading to a range of three-phase contact angles from 52.41° to 84.85°. Notably, complex nanoparticles with a gliadin/shellac mass ratio of 8:2 (G/S 8:2) showed a contact angle of 84.85°, which is considered suitable for the Pickering stabilization mechanism. Moreover, these nanoparticles exhibited the highest emulsifying activity of 52.42 m2 g-1 and emulsifying stability of 65.33%. CONCLUSIONS The findings of the study revealed that gliadin/shellac complex nanoparticles exhibited excellent resistance to environmental stress and demonstrated superior oil-water interfacial behavior. They have strong potential for further development as food emulsifiers or as nano-delivery systems for nutraceuticals. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Dong Q, Dai Y, Wang W, Ma Y, Li L. Fabrication of carvacrol loaded cellulose acetate phthalate/shellac composite film and its application to mackerel fillets preservation. Int J Biol Macromol 2024; 262:129904. [PMID: 38311137 DOI: 10.1016/j.ijbiomac.2024.129904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
In this research, the carvacrol (CAR) loaded cellulose acetate phthalate (CAP) /shellac (SH) films were prepared via electrostatic repulsion strategy and casting method. The CAP/SH-CAR films demonstrated excellent tensile strength, while also exhibiting good UV light barrier and thermal stability. The results showed that the addition of CAR significantly improved the barrier of the CAP film to water vapor and oxygen permeability. When the addition amount of CAR was 0.9 % (w/w) with respect to CAP content, the CAP/SH-CAR films exhibited good antibacterial activity and effectively reduced the growth of S. aureus and E. coli by approximately 47.9 % and 50.9 %, respectively. The presence of SH improved the retention rate of CAR in CAP/SH-CAR films, with the retention rate ranging from 45.2 to 56.8 %. Finally, the CAP/SH-CAR films were applied to preserve the mackerel fillets, indicating that the rate of freshness deterioration had been delayed and showing a good freshness preservation effect. Therefore, the CAP/SH-CAR films have the potential to be used as food packaging materials.
Collapse
Affiliation(s)
- Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yaqi Dai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China.
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
9
|
Yao S, Zhu Q, Xianyu Y, Liu D, Xu E. Polymorphic nanostarch-mediated assembly of bioactives. Carbohydr Polym 2024; 324:121474. [PMID: 37985040 DOI: 10.1016/j.carbpol.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Starch as an edible, biosafe, and functional biopolymer, has been tailored at nanoscale to deliver bioactive guests. Nanostarches fabricated in various morphologies including nanosphere, nanorod, nanoworm, nanovesicle, nanopolyhedron, nanoflake, nanonetwork etc., enable them to assemble different kinds of bioactives due to structural particularity and green modification. Previous studies have reviewed nanostarch for its preparation and application in food, however, no such work has been done for the potential of delivery system via polymorphic nanostarches. In this review, we focus on the merits of nanostarch empowered by multi-morphology for delivery system, and also conclude the assembly strategies and corresponding properties of nanostarch-based carrier. Additionally, the advantages, limitations, and future perspectives of polymorphic nanostarch are summarized to better understand the micro/nanostarch architectures and their regulation for the compatibility of bioactive molecules. According to the morphology of carrier, nanostarch effectively captures bioactives on the surface and/or inside core to form tight complexes, which maintains their stability in the human microenvironment. It improves the bioavailability of bioactive guests by different assembly approaches of carrier/guest surface combination, guest@carrier embedment, and nanostarch-mediated encapsulation. Targeted release of delivery systems is stimulated by the microenvironment conditions based on the complex structure of nanostarch loaded with bioactives.
Collapse
Affiliation(s)
- Siyu Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
10
|
Aung WW, Krongrawa W, Limmatvapirat S, Kulpicheswanich P, Okonogi S, Limmatvapirat C. Fabrication and Optimization of Electrospun Shellac Fibers Loaded with Senna alata Leaf Extract. Polymers (Basel) 2024; 16:183. [PMID: 38256981 PMCID: PMC10819501 DOI: 10.3390/polym16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Single-fluid electrospinning creates nanofibers from molten polymer solutions with active ingredients. This study utilized a combination of a fractional factorial design and a Box-Behnken design to examine crucial factors among a multitude of parameters and to optimize the electrospinning conditions that impact fiber mats' morphology and the entrapment efficiency of Senna alata leaf extract. The findings indicated that the shellac content had the greatest impact on both fiber diameter and bead formation. The optimum electrospinning conditions were identified as a voltage of 24 kV, a solution feed rate of 0.8 mL/h, and a shellac-extract ratio of 38.5:3.8. These conditions produced nanosized fibers with a diameter of 306 nm, a low bead-to-fiber ratio of 0.29, and an extract entrapment efficiency of 96% within the fibers. The biphasic profile of the optimized nanofibers was confirmed with an in vitro release study. This profile consisted of an initial burst release of 88% within the first hour, which was succeeded by a sustained release pattern surpassing 90% for the next 12 h, as predicted with zero-order release kinetics. The optimized nanofibers demonstrated antimicrobial efficacy against diverse pathogens, suggesting promising applications in wound dressings and protective textiles.
Collapse
Affiliation(s)
- Wah Wah Aung
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (W.W.A.); (W.K.); (S.L.)
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wantanwa Krongrawa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (W.W.A.); (W.K.); (S.L.)
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (W.W.A.); (W.K.); (S.L.)
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | | | - Siriporn Okonogi
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (W.W.A.); (W.K.); (S.L.)
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
11
|
Strich S, Azehaf H, Neut C, Lellouche-Jacob Y, Medkour N, Penning M, Karrout Y. Film Coatings Based on Aqueous Shellac Ammonium Salt "Swanlac ® ASL 10" and Inulin for Colon Targeting. AAPS PharmSciTech 2023; 24:205. [PMID: 37789211 DOI: 10.1208/s12249-023-02652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Over the past decades, increasing interests took place in the realm of drug delivery systems. Beyond treating intestinal diseases such as inflammatory bowel disease, colon targeting can provide possible applications for oral administration of proteins as well as vaccines due to the lower enzymatic activity in the distal part of GIT. To date, many strategies are employed to reach the colon. This article encompasses different biomaterials tested as film coatings and highlights appropriate formulations for colonic drug delivery. A comparison of different films was made to display the most interesting drug release profiles. These films contained ethylcellulose, as a thermoplastic polymer, blended with an aqueous shellac ammonium salt solution. Different blend ratios were selected as well for thin films as for coated mini-tablets, mainly varying as follows: (80:20); (75:25); (60:40). The impact of blend ratio and coating level was examined as well as the addition of natural polysaccharide "inulin" to target the colon. In vitro drug release was measured in 0.1 M HCl for 2 h followed by phosphate buffer saline pH 6.8 to simulate gastric and intestinal fluids, respectively. Coated mini-tablets were exposed to fresh fecal samples of humans in order to simulate roughly colonic content. Several formulations were able to fully protect theophylline as a model drug up to 8 h in the upper GIT, but allowing for prolonged release kinetics in the colon. These very interesting colonic release profiles were related to the amount of the natural polysaccharide added into the system.
Collapse
Affiliation(s)
- S Strich
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France
| | - H Azehaf
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France
| | - C Neut
- Univ. Lille, Inserm, CHU Lille, U1286_INFINITE, F-59000, Lille, France
| | | | - N Medkour
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France
| | - M Penning
- PennConsult, Wormser Straße 28, 55276, Oppenheim, Germany
| | - Y Karrout
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France.
| |
Collapse
|
12
|
Liu L, Li X, Dong G, Zhang H, Tao YF, He R, Xu J, Ma J, Tang B, Zhou B. Bioinspired Natural Shellac Dressing for Rapid Wound Sealing and Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43294-43308. [PMID: 37695271 DOI: 10.1021/acsami.3c06734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Developing safe and effective wound dressings that address the complexities of wound healing is an ongoing goal in biomaterials research. Inspired by the shield used to protect lac insects, we have designed and developed a type of bioactive shellac-based wound dressing in this paper. The dressing exhibited a high adhesion energy of 146.6 J·m-2 in porcine skin and showed a reversible binding due to its pH sensitivity. Meanwhile, a novel "shellac-like" compound, n-octacosanol gallate ester, has been synthesized and added to the dressing to improve its antibacterial and blood coagulation properties. The novel shellac-based dressing could be sprayed to form a sticky film within 70 s for rapid hemostasis and wound sealing, which could be conveniently applied to various wounds on extensible body parts. In addition, the shellac-based dressing can actively promote the healing of a full-thickness wound in the skin of mice. We also used molecular dynamics simulations to investigate the interactions between the shellac molecule and the phospholipid bilayer and attempted to show that the shellac molecule was beneficial for wound healing. This work provides a novel and practical bioinspired wound dressing with significant properties, facile preparation, and ease of use, which is an interesting alternative to its traditional counterparts.
Collapse
Affiliation(s)
- Lanxiang Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Xiang Li
- Yunnan Province Key Laboratory of Wood Adhesives and Glued Products, Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Joint-Research Center for Bio-Materials, Ministry of Science and Technology, College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
- College of Life Science and College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Gang Dong
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Hong Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Yun-Feng Tao
- College of Life Science and College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Rui He
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Juan Xu
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Jinju Ma
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Baoshan Tang
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Bei Zhou
- Yunnan Province Key Laboratory of Wood Adhesives and Glued Products, Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Joint-Research Center for Bio-Materials, Ministry of Science and Technology, College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
- College of Life Science and College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
13
|
Mohammed-Sadhakathullah AHM, Paulo-Mirasol S, Torras J, Armelin E. Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. Int J Mol Sci 2023; 24:10312. [PMID: 37373461 PMCID: PMC10299464 DOI: 10.3390/ijms241210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.
Collapse
Affiliation(s)
- Ahammed H. M. Mohammed-Sadhakathullah
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Sofia Paulo-Mirasol
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| |
Collapse
|
14
|
Yang Y, Chen W, Wang M, Shen J, Tang Z, Qin Y, Yu DG. Engineered Shellac Beads-on-the-String Fibers Using Triaxial Electrospinning for Improved Colon-Targeted Drug Delivery. Polymers (Basel) 2023; 15:polym15102237. [PMID: 37242812 DOI: 10.3390/polym15102237] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Colon-targeted drug delivery is gradually attracting attention because it can effectively treat colon diseases. Furthermore, electrospun fibers have great potential application value in the field of drug delivery because of their unique external shape and internal structure. In this study, a core layer of hydrophilic polyethylene oxide (PEO) and the anti-colon-cancer drug curcumin (CUR), a middle layer of ethanol, and a sheath layer of the natural pH-sensitive biomaterial shellac were used in a modified triaxial electrospinning process to prepare beads-on-the-string (BOTS) microfibers. A series of characterizations were carried out on the obtained fibers to verify the process-shape/structure-application relationship. The results of scanning electron microscopy and transmission electron microscopy indicated a BOTS shape and core-sheath structure. X-ray diffraction results indicated that the drug in the fibers was in an amorphous form. Infrared spectroscopy revealed the good compatibility of the components in the fibers. In vitro drug release revealed that the BOTS microfibers provide colon-targeted drug delivery and zero-order drug release. Compared to linear cylindrical microfibers, the obtained BOTS microfibers can prevent the leakage of drugs in simulated gastric fluid, and they provide zero-order release in simulated intestinal fluid because the beads in BOTS microfibers can act as drug reservoirs.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Wei Chen
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiachen Shen
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zheng Tang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yongming Qin
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
15
|
Wang W, Huang WC, Zheng J, Xue C, Mao X. Preparation and comparison of dialdehyde derivatives of polysaccharides as cross-linking agents. Int J Biol Macromol 2023; 236:123913. [PMID: 36868335 DOI: 10.1016/j.ijbiomac.2023.123913] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Dialdehyde-based cross-linking agents are widely used in the cross-linking of amino group-containing macromolecules. However, the most commonly used cross-linking agents, glutaraldehyde (GA) and genipin (GP), have safety issues. In this study, a series of dialdehyde derivatives of polysaccharides (DADPs) were prepared by oxidation of polysaccharides, and their biocompatibility and cross-linking properties were tested using chitosan as a model macromolecule. The DADPs showed outstanding cross-linking and gelation properties comparable to GA and GP. The DADPs and hydrogels cross-linked with the DADPs exhibited excellent cytocompatibility and hemocompatibility with different concentrations while significant cytotoxicity was observed in GA and GP. The experimental results showed that the cross-linking effect of DADPs increased along with their oxidation degree. The outstanding cross-linking effect of the DADPs show a potential for use in the cross-linking of biomacromolecules with amino groups and could be an adequate alternative to existing cross-linkers.
Collapse
Affiliation(s)
- Wenjie Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China
| | - Wen-Can Huang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China.
| | - Jie Zheng
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China
| | - Changhu Xue
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China.
| |
Collapse
|
16
|
Abstract
Particle coating is one of the oldest pharmaceutical processes that is still in existence. It is the process of applying a thin polymer-based film to a particle or granule containing the active pharmaceutical ingredient. The widely used methods for particle coating are sugar coating, film coating, and enteric coating and the techniques are pan coating, fluidized bed coating, and compression coating. Sugar coating was the earlier coating method, and it was gradually replaced by film coating because it required skilled manipulation. With the technology developing, enteric coating draws more attention. Pan coating is the most classic coating technique, which is applied to sugar coating, film coating and enteric coating. Fluid bed coating is used for a mixture of multiple materials and medicines and keeps the bioavailability high. Compression coating can avoid the harmful effects of moisture and high temperature, while it requires highly accurate machinery.
Collapse
|