1
|
Gu Y, Lu Y, Dai P, Cao X, Zhou Y, Tang Y, Fang Z, Wu P. Self-assembled high-entropy Prussian blue analogue nanosheets enabling efficient sodium storage. J Colloid Interface Sci 2025; 677:307-313. [PMID: 39094491 DOI: 10.1016/j.jcis.2024.07.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
High entropy material (HEM) has emerged as an appealing material platform for various applications, and specifically, the electrochemical performances of HEM could be further improved through self-assembled structure design. However, it remains a big challenge to construct such high-entropy self-assemblies primarily due to the compositional complexity. Herein, we propose a bottom-up directional freezing route to self-assemble high-entropy hydrosols into porous nanosheets. Taking Prussian blue analogue (PBA) as an example, the simultaneous coordination-substitution reactions yield stable high-entropy PBA hydrosols. During subsequent directional freezing process, the anisotropic growth of ice crystals could guide the two-dimensional confined assembly of colloidal nanoparticles, resulting in high-entropy PBA nanosheets (HE-PBA NSs). Thanks to the high-entropy and self-assembled structure design, the HE-PBA NSs manifests markedly enhanced sodium storage kinetics and performances in comparison with medium/low entropy nanosheets and high entropy nanoparticles.
Collapse
Affiliation(s)
- Yunjiang Gu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yonglin Lu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pengfei Dai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xin Cao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yiming Zhou
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhiwei Fang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States.
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Wang Y, Liu J, Jiang N, Yang J, Yang C, Liu Y. Highly Crystalline Multivariate Prussian Blue Analogs via Equilibrium Chelation Strategy for Stable and Fast Charging Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403211. [PMID: 38958082 DOI: 10.1002/smll.202403211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Prussian blue analogs (PBAs) have been widely recognized as superior cathode materials for sodium-ion batteries (SIBs) owing to numerous merits. However, originating from the rapid crystal growth, PBAs still suffer from considerable vacancy defects and interstitial water, making the preparation of long-cycle-life PBAs the greatest challenge for its practical application. Herein, a novel equilibrium chelation strategy is first proposed to synthesize a high crystallinity (94.7%) PBAs, which is realized by modulating the chelating potency of strong chelating agents via "acid effect" to achieve a moderate chelating effect, forcefully breaking through the bottleneck of poor cyclic stability for PBAs cathodes. Impressively, the as-prepared highly crystalline PBAs represent an unprecedented level of electrochemical performance including ultra-long lifespan (10000 cycles with 86.32% capacity maintenance at 6 A g-1), excellent rate capability (82.0 mAh g-1 at 6 A g-1). Meanwhile, by pairing with commercial hard carbon, the as-prepared PBAs-based SIBs exhibit high energy density (350 Wh kg-1) and excellent capacity retention (82.4% after 1500 cycles), highlighting its promising potential for large-scale energy storage applications.
Collapse
Affiliation(s)
- Yichao Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiahe Liu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ning Jiang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jianhua Yang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Cheng Yang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yu Liu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Hu X, Jian W, Hong N, Zhong X, Yang M, Tao S, Huang J, Wang H, Gao J, Deng W, Zou G, Hou H, Silvester DS, Banks CE, Ji X. Confined Element Distribution with Structure-Driven Energy Coupling for Enhanced Prussian Blue Analogue Cathode. Angew Chem Int Ed Engl 2024; 63:e202410420. [PMID: 38961660 DOI: 10.1002/anie.202410420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The structural failure of Na2Mn[Fe(CN)6] could not be alleviated with traditional modification strategies through the adjustable composition property of Prussian blue analogues (PBAs), considering that the accumulation and release of stress derived from the MnN6 octahedrons are unilaterally restrained. Herein, a novel application of adjustable composition property, through constructing a coordination competition relationship between chelators and [Fe(CN)6]4- to directionally tune the enrichment of elements, is proposed to restrain structural degradation and induce unconventional energy coupling phenomenon. The non-uniform distribution of elements at the M1 site of PBAs (NFM-PB) is manipulated by the sequentially precipitated Ni, Fe, and Mn according to the Irving-William order. Electrochemically active Fe is operated to accompany Mn, and zero-strain Ni is modulated to enrich at the surface, synergistically mitigating with the enrichment and release of stress and then significantly improving the structural stability. Furthermore, unconventional energy coupling effect, a fusion of the electrochemical behavior between FeLS and MnHS, is triggered by the confined element distribution, leading to the enhanced electrochemical stability and anti-polarization ability. Consequently, the NFM-PB demonstrates superior rate performance and cycling stability. These findings further exploit potentialities of the adjustable composition property and provide new insights into the component design engineering for advanced PBAs.
Collapse
Affiliation(s)
- Xinyu Hu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weishun Jian
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Ningyun Hong
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xue Zhong
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Mushi Yang
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shusheng Tao
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiangnan Huang
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Haoji Wang
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jingqiang Gao
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wentao Deng
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
4
|
Luo Y, Shen J, Yao Y, Dai J, Ling F, Li L, Jiang Y, Wu X, Rui X, Yu Y. Inhibiting the Jahn-Teller Effect of Manganese Hexacyanoferrate via Ni and Cu Codoping for Advanced Sodium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405458. [PMID: 38839062 DOI: 10.1002/adma.202405458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Manganese (Mn)-based Prussian blue analogs (PBAs) are of great interest as a prospective cathode material for sodium-ion batteries (SIBs) due to their high redox potential, easy synthesis, and low cost. However, the Jahn-Teller effect and low electrical conductivity of Mn-based PBA cause poor structure stability and unsatisfactory performance during the cycling. Herein, a novel nickel- and copper-codoped K2Mn[Fe(CN)6] cathode is developed via a simple coprecipitation strategy. The doping elements improve the electrical conductivity of Mn-based PBA by reducing the bandgap, as well as suppress the Jahn-Teller effect by stabilizing the framework, as verified by the density functional theory calculations. Simultaneously, the substitution of sodium with potassium in the lattice is beneficial for filling vacancies in the PBA framework, leading to higher average operating voltages and superior structural stability. As a result, the as-prepared Mn-based cathode exhibits excellent reversible capacity (116.0 mAh g-1 at 0.01 A g-1) and superior cycling stability (81.8% capacity retention over 500 cycles at 0.1 A g-1). This work provides a profitable doping strategy to inhibit the Jahn-Teller structural deformation for designing stable cathode material of SIBs.
Collapse
Affiliation(s)
- Yifang Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jialong Shen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junyi Dai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fangxin Ling
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ling Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Jiang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Chen X. Announcing the 2024 ACS Nano Lectureship and ACS Nano Impact Laureates. ACS NANO 2024. [PMID: 38856085 DOI: 10.1021/acsnano.4c06869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
|
6
|
Cui M, Zhu Y, Lei H, Liu A, Mo F, Ouyang K, Chen S, Lin X, Chen Z, Li K, Jiao Y, Zhi C, Huang Y. Anion-Cation Competition Chemistry for Comprehensive High-Performance Prussian Blue Analogs Cathodes. Angew Chem Int Ed Engl 2024; 63:e202405428. [PMID: 38563631 DOI: 10.1002/anie.202405428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
The extensively studied Prussian blue analogs (PBAs) in various batteries are limited by their low discharge capacity, or subpar rate etc., which are solely reliant on the cation (de)intercalation mechanism. In contrast to the currently predominant focus on cations, we report the overlooked anion-cation competition chemistry (Cl-, K+, Zn2+) stimulated by high-voltage scanning. With our designed anion-cation combinations, the KFeMnHCF cathode battery delivers comprehensively superior discharge performance, including voltage plateau >2.0 V (vs. Zn/Zn2+), capacity >150 mAh g-1, rate capability with capacity maintenance above 96 % from 0.6 to 5 A g-1, and cyclic stability exceeding 3000 cycles. We further verify that such comprehensive improvement of electrochemical performance utilizing anion-cation competition chemistry is universal for different types of PBAs. Our work would pave a new and efficient road towards the next-generation high-performance PBAs cathode batteries.
Collapse
Affiliation(s)
- Mangwei Cui
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Yilong Zhu
- School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, Australia
| | - Hao Lei
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Ao Liu
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Funian Mo
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Kefeng Ouyang
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Sheng Chen
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, 610064, Chengdu, China
| | - Xi Lin
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Zuhuang Chen
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Kaikai Li
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Yan Jiao
- School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, Australia
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 999077, Hong Kong, China
| | - Yan Huang
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| |
Collapse
|
7
|
Li X, Guo T, Shang Y, Zheng T, Jia B, Niu X, Zhu Y, Wang Z. Interior-Confined Vacancy in Potassium Manganese Hexacyanoferrate for Ultra-Stable Potassium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310428. [PMID: 38230871 DOI: 10.1002/adma.202310428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Metal hexacyanoferrates (HCFs) are viewed as promising cathode materials for potassium-ion batteries (PIBs) because of their high theoretical capacities and redox potentials. However, the development of an HCF cathode with high cycling stability and voltage retention is still impeded by the unavoidable Fe(CN)6 vacancies (VFeCN) and H2O in the materials. Here, a repair method is proposed that significantly reduces the VFeCN content in potassium manganese hexacyanoferrate (KMHCF) enabled by the reducibility of sodium citrate and removal of ligand H2O at high temperature (KMHCF-H). The KMHCF-H obtained at 90 °C contains only 2% VFeCN, and the VFeCN is concentrated in the lattice interior. Such an integrated Fe-CN-Mn surface structure of the KMHCF-H cathode with repaired surface VFeCN allows preferential decomposition of potassium bis(fluorosulfonyl)imide (KFSI) in the electrolyte, which constitutes a dense anion-dominated cathode electrolyte interphase (CEI) , inhibiting effectively Mn dissolution into the electrolyte. Consequently, the KMHCF-H cathode exhibits excellent cycling performance for both half-cell (95.2 % at 0.2 Ag-1 after 2000 cycles) and full-cell (99.4 % at 0.1 Ag-1 after 200 cycles). This thermal repair method enables scalable preparation of KMHCF with a low content of vacancies, holding substantial promise for practical applications of PIBs.
Collapse
Affiliation(s)
- Xiaoxia Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianqi Guo
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Yang Shang
- Institute of Advanced Battery Materials and Devices, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tian Zheng
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Binbin Jia
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiaogang Niu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yujie Zhu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| |
Collapse
|
8
|
Ma P, Li XL, Shi Y, Yan D, Yang H, Wang Y, Yang HY. Co 4S 3 Nanoparticles Confined in an MnS Nanorod-Grafted N, S-Codoped Carbon Polyhedron for Highly Efficient Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58356-58366. [PMID: 38054241 DOI: 10.1021/acsami.3c12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Sodium-ion batteries (SIBs) suffer from limited ion diffusion and structural expansion, generating the urgent demand for Na+ accommodable materials with promising architectures. In this work, the rational exploration for Co4S3 nanoparticles confined in an MnS nanorod-grafted N, S-codoped carbon polyhedron (Co-Mn-S@N-S-C) is achieved by the in situ growth of MOF on MnO2 nanorod along with the subsequent carbonization and sulfurization. Benefiting from the distinctive nanostructure, the Co-Mn-S@N-S-C anode delivers excellent structural stability, resulting in prolonged cycling stability with a capacity retention of 90.2% after 1000 cycles at 2 A g-1. Moreover, the reaction storage mechanism is clarified by the in situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. The results indicate that properly designed electrode materials have huge potential applications for highly efficient energy storage devices.
Collapse
Affiliation(s)
- Pin Ma
- School of Materials and New Energy, Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan 750021, China
| | - Xue Liang Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Yumeng Shi
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Yan
- International Joint Laboratory of New Energy Materials and Devices of Henan Province, School of Physics & Electronics, Henan University, Kaifeng 475004, China
| | - Haoyuan Yang
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Ye Wang
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| |
Collapse
|
9
|
Wang H, Zhou L, Cheng Z, Liu L, Wang Y, Du T. Recent Advances on F-Doped Layered Transition Metal Oxides for Sodium Ion Batteries. Molecules 2023; 28:8065. [PMID: 38138553 PMCID: PMC10745554 DOI: 10.3390/molecules28248065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
With the development of social economy, using lithium-ion batteries in energy storage in industries such as large-scale electrochemical energy storage systems will cause lithium resources to no longer meet demand. As such, sodium ion batteries have become one of the effective alternatives to LIBs. Many attempts have been carried out by researchers to achieve this, among which F-doping is widely used to enhance the electrochemical performance of SIBs. In this paper, we reviewed several types of transition metal oxide cathode materials, and found their electrochemical properties were significantly improved by F-doping. Moreover, the modification mechanism of F-doping has also been summed up. Therefore, the application and commercialization of SIBs in the future is summarized in the ending of the review.
Collapse
Affiliation(s)
- Hao Wang
- State Environmental Protection Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang 110819, China; (H.W.)
- Engineering Research Center of Frontier Technologies for Low-Carbon Steelmaking (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Lifeng Zhou
- State Environmental Protection Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang 110819, China; (H.W.)
| | - Zhenyu Cheng
- State Environmental Protection Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang 110819, China; (H.W.)
| | - Liying Liu
- State Environmental Protection Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang 110819, China; (H.W.)
| | - Yisong Wang
- State Environmental Protection Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang 110819, China; (H.W.)
- Engineering Research Center of Frontier Technologies for Low-Carbon Steelmaking (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Tao Du
- State Environmental Protection Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang 110819, China; (H.W.)
- Engineering Research Center of Frontier Technologies for Low-Carbon Steelmaking (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
10
|
Dai J, Tan S, Wang L, Ling F, Duan F, Ma M, Shao Y, Rui X, Yao Y, Hu E, Wu X, Li C, Yu Y. High-Voltage Potassium Hexacyanoferrate Cathode via High-Entropy and Potassium Incorporation for Stable Sodium-Ion Batteries. ACS NANO 2023; 17:20949-20961. [PMID: 37906735 DOI: 10.1021/acsnano.3c02323] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Prussian blue analogues (PBAs) used as sodium ion battery (SIB) cathodes are usually the focus of attention due to their three-dimensional open frame and high theoretical capacity. Nonetheless, the disadvantages of a low working voltage and inferior structural stability of PBAs prevent their further applications. Herein, we propose constructing the Kx(MnFeCoNiCu)[Fe(CN)6] (HE-K-PBA) cathode by high-entropy and potassium incorporation strategy to simultaneously realize high working voltage and cycling stability. The reaction mechanism of metal cations in HE-K-PBA are revealed by synchrotron radiation X-ray absorption spectroscopy (XAS), ex situ X-ray photoelectron spectroscopy (XPS), and in situ Raman spectra. We also investigate the entropy stabilization mechanism via finite element simulation, demonstrating that HE-K-PBA with small von Mises stress and weak structure strain can significantly mitigate the structural distortion. Benefit from the stable structure and everlasting K+ (de)intercalation, the HE-K-PBA delivers high output voltage (3.46 V), good reversible capacity (120.5 mAh g-1 at 0.01 A g-1), and capacity retention of 90.4% after 1700 cycles at 1.0 A g-1. Moreover, the assembled full cell and all-solid-state batteries with a stable median voltage of 3.29 V over 3000 cycles further demonstrate the application prospects of the HE-K-PBA cathode.
Collapse
Affiliation(s)
- Junyi Dai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Sha Tan
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Fangxin Ling
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Fuqiang Duan
- College of Aerospace Science and Engineering, National University of Defense Technology, Chang Sha 410073, Hunan, China
| | - Mingze Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yu Shao
- Jiujiang DeFu Technology Co., LTD., Jiujiang 332000, Jiangxi, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Enyuan Hu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Chunyang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Liu J, Yang C, Wen B, Li B, Liu Y. Ultra-Long Cycle of Prussian Blue Analogs Achieved by Equilibrium Electrolyte for Aqueous Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303896. [PMID: 37460403 DOI: 10.1002/smll.202303896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Indexed: 11/16/2023]
Abstract
Aqueous sodium-ion batteries have promising prospects in large-scale electrical energy storage, which lack of suitable cathode with high specific capacity and long cycle lifespan, unfortunately. Manganese-based Prussian blue analogs (PBAs) (KMnHCF/NaMnHCF) are ideal candidates for low-cost and high theoretical specific capacity merits. But the rapid decline hinders their application, due to side reactions caused by water imbalance. Here, an equilibrium strategy, which can balance the interstitial water supplement and water attack, is proposed. As proof of the concept, xCS (x: proportion, CS: co-solvent, such as polyethylene glycol and trimethyl phosphate) equilibrium electrolytes are introduced to solve the rapid decline. Assisting with the electrolyte, KMnHCF realizes excellent performance (10 000 cycles), which is beyond most cathode materials of sodium-ion batteries. The full batteries composed of KMnHCF cathode and NaTi2 (PO4 )3 anode also display outstanding performance (7000 cycles) and promising application prospects at low-temperature and engineering scenes. And then, the equilibrium electrolyte concept is verified by NaMn0.8 Fe0.2 HCF and NaMnHCF, proving its universality for low-cost and long-life manganese based PBAs.
Collapse
Affiliation(s)
- Jiahe Liu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Yang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Bo Wen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Li
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Liu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
12
|
Yu H, Ruan X, Wang J, Gu Z, Liang Q, Cao JM, Kang J, Du CF, Wu XL. From Solid-Solution MXene to Cr-Substituted Na 3V 2(PO 4) 3: Breaking the Symmetry of Sodium Ions for High-Voltage and Ultrahigh-Rate Cathode Performance. ACS NANO 2022; 16:21174-21185. [PMID: 36394456 DOI: 10.1021/acsnano.2c09122] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stabilizing Na+ accessibility at high voltage and accelerating Na+ diffusivity are pressing issues to further enhance the energy density of the Na3V2(PO4)3 (NVP) cathode for sodium-ion batteries (SIBs). Herein, by taking a V/Cr solid-solution MXene as a precursor, a facile in-situ reactive transformation strategy to embed Cr-substituted NVP (NVCP) nanocrystals in a dual-carbon network is proposed. Particularly, the substituted Cr atom triggers the accessibility of additional Na+ in NVCP, which is demonstrated by an additional reversible redox plateau at 4.0 V even under extreme conditions. More importantly, the Cr atom alters the Na+ ordering at the Na2 sites with an additional intermediate phase formation during charging/discharging, thus reducing the energy barriers for Na+ migration. As a result, Na+ diffusivity in NVCP accelerates to 2-3 orders of magnitude higher than that of NVP. Eventually, the NVCP cathode exhibits extraordinarily high-rate capability (78 mA g-1 at 200 C and 68975 W kg-1), outstanding cycle stability (over 1500 cycles at 10 C), excellent low-temperature property, and full cell performance.
Collapse
Affiliation(s)
- Hong Yu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xiaopeng Ruan
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Jinjin Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhenyi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jun-Ming Cao
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Jinzhao Kang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Cheng-Feng Du
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|