1
|
Liu X, Liu G, Fu T, Ding K, Guo J, Wang Z, Xia W, Shangguan H. Structural Design and Energy and Environmental Applications of Hydrogen-Bonded Organic Frameworks: A Systematic Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400101. [PMID: 38647267 PMCID: PMC11165539 DOI: 10.1002/advs.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are emerging porous materials that show high structural flexibility, mild synthetic conditions, good solution processability, easy healing and regeneration, and good recyclability. Although these properties give them many potential multifunctional applications, their frameworks are unstable due to the presence of only weak and reversible hydrogen bonds. In this work, the development history and synthesis methods of HOFs are reviewed, and categorize their structural design concepts and strategies to improve their stability. More importantly, due to the significant potential of the latest HOF-related research for addressing energy and environmental issues, this work discusses the latest advances in the methods of energy storage and conversion, energy substance generation and isolation, environmental detection and isolation, degradation and transformation, and biological applications. Furthermore, a discussion of the coupling orientation of HOF in the cross-cutting fields of energy and environment is presented for the first time. Finally, current challenges, opportunities, and strategies for the development of HOFs to advance their energy and environmental applications are discussed.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Guangli Liu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Tao Fu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Keren Ding
- AgResearchRuakura Research CentreHamilton3240New Zealand
| | - Jinrui Guo
- College of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Zhenran Wang
- School of Environmental Science and EngineeringSouthwest Jiaotong UniversityChengdu611756China
| | - Wei Xia
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| |
Collapse
|
2
|
Xu H, Chakraborty R, Adak AK, Das A, Yang B, Meier D, Riss A, Reichert J, Narasimhan S, Barth JV, Papageorgiou AC. On-Surface Isomerization of Indigo within 1D Coordination Polymers. Angew Chem Int Ed Engl 2024; 63:e202319162. [PMID: 38235942 DOI: 10.1002/anie.202319162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Natural products are attractive components to tailor environmentally friendly advanced new materials. We present surface-confined metallosupramolecular engineering of coordination polymers using natural dyes as molecular building blocks: indigo and the related Tyrian purple. Both building blocks yield identical, well-defined coordination polymers composed of (1 dehydroindigo : 1 Fe) repeat units on two different silver single crystal surfaces. These polymers are characterized atomically by submolecular resolution scanning tunnelling microscopy, bond-resolving atomic force microscopy and X-ray photoelectron spectroscopy. On Ag(100) and on Ag(111), the trans configuration of dehydroindigo results in N,O-chelation in the polymer chains. On the more inert Ag(111) surface, the molecules additionally undergo thermally induced isomerization from the trans to the cis configuration and afford N,N- plus O,O-chelation. Density functional theory calculations confirm that the coordination polymers of the cis-isomers on Ag(111) and of the trans-isomers on Ag(100) are energetically favoured. Our results demonstrate post-synthetic linker isomerization in interfacial metal-organic nanosystems.
Collapse
Affiliation(s)
- Hongxiang Xu
- Technical University of Munich, TUM School of Natural Sciences, Physics Department E20, James Franck Strasse 1, 85748, Garching, Germany
| | - Ritam Chakraborty
- Theoretical Sciences Unit & School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560054, India
| | - Abhishek Kumar Adak
- Theoretical Sciences Unit & School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560054, India
- Current address: The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy
| | - Arpan Das
- Theoretical Sciences Unit & School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560054, India
| | - Biao Yang
- Technical University of Munich, TUM School of Natural Sciences, Physics Department E20, James Franck Strasse 1, 85748, Garching, Germany
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Dennis Meier
- Technical University of Munich, TUM School of Natural Sciences, Physics Department E20, James Franck Strasse 1, 85748, Garching, Germany
| | - Alexander Riss
- Technical University of Munich, TUM School of Natural Sciences, Physics Department E20, James Franck Strasse 1, 85748, Garching, Germany
| | - Joachim Reichert
- Technical University of Munich, TUM School of Natural Sciences, Physics Department E20, James Franck Strasse 1, 85748, Garching, Germany
| | - Shobhana Narasimhan
- Theoretical Sciences Unit & School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560054, India
| | - Johannes V Barth
- Technical University of Munich, TUM School of Natural Sciences, Physics Department E20, James Franck Strasse 1, 85748, Garching, Germany
| | - Anthoula C Papageorgiou
- Technical University of Munich, TUM School of Natural Sciences, Physics Department E20, James Franck Strasse 1, 85748, Garching, Germany
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
3
|
Schneider JK, Ove CA, Pirlo RK, Biffinger JC. Synthesis and characterization of thermoplastic poly(piperazine succinate) metallopolymers coordinated to ruthenium(
III
) or iron(
III
). JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Clarissa A. Ove
- Department of Chemistry University of Dayton Dayton Ohio USA
| | - Russell K. Pirlo
- Department of Chemical Engineering University of Dayton Dayton Ohio USA
| | | |
Collapse
|