1
|
Janicek BE, Mair S, Chiang YM, Ophus C, Jiang X. Structural Complexities in Sodium Ion Conductive Antiperovskite Revealed by Cryogenic Transmission Electron Microscopy. NANO LETTERS 2024. [PMID: 39017592 DOI: 10.1021/acs.nanolett.4c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
We use low-dose cryogenic transmission electron microscopy (cryo-TEM) to investigate the atomic-scale structure of antiperovskite Na2NH2BH4 crystals by preserving the room-temperature cubic phase and carefully monitoring the electron dose. Via quantitative analysis of electron beam damage using selected area electron diffraction, we find cryogenic imaging provides 6-fold improvement in beam stability for this solid electrolyte. Cryo-TEM images obtained from flat crystals revealed the presence of a new, long-range-ordered supercell with a cubic phase. The supercell exhibits doubled unit cell dimensions of 9.4 Å × 9.4 Å as compared to the cubic lattice structure revealed by X-ray crystallography of 4.7 Å × 4.7 Å. The comparison between the experimental image and simulated potential map indicates the origin of the supercell is a vacancy ordering of sodium atoms. This work demonstrates the potential of using cryo-TEM imaging to study the atomic-scale structure of air- and electron-beam-sensitive antiperovskite-type solid electrolytes.
Collapse
Affiliation(s)
- Blanka E Janicek
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sunil Mair
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yet-Ming Chiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Colin Ophus
- The National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xi Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Ma Y, Shi J, Guzman R, Li A, Zhou W. Aberration Correction for Large-Angle Illumination Scanning Transmission Electron Microscopy by Using Iterative Electron Ptychography Algorithms. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:226-235. [PMID: 38578297 DOI: 10.1093/mam/ozae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 04/06/2024]
Abstract
Modern aberration correctors in the scanning transmission electron microscope (STEM) have dramatically improved the attainable spatial resolution and enabled atomical structure and spectroscopic analysis even at low acceleration voltages (≤80 kV). For a large-angle illumination, achieving successful aberration correction to high angles is challenging with an aberration corrector, which limits further improvements in applications such as super-resolution, three-dimensional atomic depth resolution, or atomic surface morphology analyses. Electron ptychography based on four-dimensional STEM can provide a postprocessing strategy to overcome the current technological limitations. In this work, we have demonstrated that aberration correction for large-angle illumination is feasible by pushing the capabilities of regularized ptychographic iterative engine algorithms to reconstruct 4D data sets acquired using a relatively low-efficiency complementary metal oxide semiconductor camera. We report super resolution (0.71 Å) with large-angle illumination (50-60 mrad) and under 60 kV accelerating voltage.
Collapse
Affiliation(s)
- Yinhang Ma
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jinan Shi
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Roger Guzman
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ang Li
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Wang K, Gu Z, Liu H, Hu L, Wu Y, Xu J, Ma C. High-Humidity-Tolerant Chloride Solid-State Electrolyte for All-Solid-State Lithium Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305394. [PMID: 38308195 PMCID: PMC11005720 DOI: 10.1002/advs.202305394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Halide solid-state electrolytes (SSEs) hold promise for the commercialization of all-solid-state lithium batteries (ASSLBs); however, the currently cost-effective zirconium-based chloride SSEs suffer from hygroscopic irreversibility, low ionic conductivity, and inadequate thermal stability. Herein, a novel indium-doped zirconium-based chloride is fabricated to satisfy the abovementioned requirements, achieving outstanding-performance ASSLBs at room temperature. Compared to the conventional Li2ZrCl6 and Li3InCl6 SSEs, the hc-Li2+xZr1-xInxCl6 (0.3 ≤ x ≤ 1) possesses higher ionic conductivity (up to 1.4 mS cm-1), and thermal stability (350 °C). At the same time, the hc-Li2.8Zr0.2In0.8Cl6 also shows obvious hygroscopic reversibility, where its recovery rate of the ionic conductivity is up to 82.5% after 24-h exposure in the 5% relative humidity followed by heat treatment. Theoretical calculation and experimental results reveal that those advantages are derived from the lattice expansion and the formation of Li3InCl6 ·2H2O hydrates, which can effectively reduce the migration energy barrier of Li ions and offer reversible hydration/dehydration pathway. Finally, an ASSLB, assembled with reheated-Li2.8Zr0.2In0.8Cl6 after humidity exposure, single-crystal LiNi0.8Mn0.1Co0.1O2 and Li-In alloy, exhibits capacity retention of 71% after 500 cycles under 1 C at 25 °C. This novel high-humidity-tolerant chloride electrolyte is expected to greatly carry forward the ASSLBs industrialization.
Collapse
Affiliation(s)
- Kai Wang
- School of Materials & EnergyLanzhou UniversityLanzhouGansu730000China
- Hefei National Research Center for Physical Sciences at the MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Zhenqi Gu
- Hefei National Research Center for Physical Sciences at the MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Haoxuan Liu
- Institute for Superconducting and Electronic MaterialsAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNew South Wales2525Australia
| | - Lv Hu
- Hefei National Research Center for Physical Sciences at the MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Ying Wu
- School of Materials & EnergyLanzhou UniversityLanzhouGansu730000China
| | - Jie Xu
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035China
| | - Cheng Ma
- Hefei National Research Center for Physical Sciences at the MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- National Synchrotron Radiation LaboratoryHefeiAnhui230026China
| |
Collapse
|
4
|
Yu K, Chen W, Deng D, Wu Q, Hao J. Advancements in Battery Monitoring: Harnessing Fiber Grating Sensors for Enhanced Performance and Reliability. SENSORS (BASEL, SWITZERLAND) 2024; 24:2057. [PMID: 38610274 PMCID: PMC11014410 DOI: 10.3390/s24072057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Batteries play a crucial role as energy storage devices across various industries. However, achieving high performance often comes at the cost of safety. Continuous monitoring is essential to ensure the safety and reliability of batteries. This paper investigates the advancements in battery monitoring technology, focusing on fiber Bragg gratings (FBGs). By examining the factors contributing to battery degradation and the principles of FBGs, this study discusses key aspects of FBG sensing, including mounting locations, monitoring targets, and their correlation with optical signals. While current FBG battery sensing can achieve high measurement accuracies for temperature (0.1 °C), strain (0.1 με), pressure (0.14 bar), and refractive index (6 × 10-5 RIU), with corresponding sensitivities of 40 pm/°C, 2.2 pm/με, -0.3 pm/bar, and -18 nm/RIU, respectively, accurately assessing battery health in real time remains a challenge. Traditional methods struggle to provide real-time and precise evaluations by analyzing the microstructure of battery materials or physical phenomena during chemical reactions. Therefore, by summarizing the current state of FBG battery sensing research, it is evident that monitoring battery material properties (e.g., refractive index and gas properties) through FBGs offers a promising solution for real-time and accurate battery health assessment. This paper also delves into the obstacles of battery monitoring, such as standardizing the FBG encapsulation process, decoupling multiple parameters, and controlling costs. Ultimately, the paper highlights the potential of FBG monitoring technology in driving advancements in battery development.
Collapse
Affiliation(s)
- Kaimin Yu
- School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China; (K.Y.); (D.D.); (Q.W.)
| | - Wen Chen
- School of Ocean Information Engineering, Jimei University, Xiamen 361021, China
| | - Dingrong Deng
- School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China; (K.Y.); (D.D.); (Q.W.)
| | - Qihui Wu
- School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China; (K.Y.); (D.D.); (Q.W.)
| | - Jianzhong Hao
- Institute for Infocomm Research (IR), Agency for Science, Technology and Research (A★STAR), Singapore 138632, Singapore
| |
Collapse
|
5
|
Kim NY, Cao S, More KL, Lupini AR, Miao J, Chi M. Hollow Ptychography: Toward Simultaneous 4D Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208162. [PMID: 37203310 DOI: 10.1002/smll.202208162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/13/2023] [Indexed: 05/20/2023]
Abstract
With the recent development of high-acquisition-speed pixelated detectors, 4D scanning transmission electron microscopy (4D-STEM) is becoming routinely available in high-resolution electron microscopy. 4D-STEM acts as a "universal" method that provides local information on materials that is challenging to extract from bulk techniques. It extends conventional STEM imaging to include super-resolution techniques and to provide quantitative phase-based information, such as differential phase contrast, ptychography, or Bloch wave phase retrieval. However, an important missing factor is the chemical and bonding information provided by electron energy loss spectroscopy (EELS). 4D-STEM and EELS cannot currently be acquired simultaneously due to the overlapping geometry of the detectors. Here, the feasibility of modifying the detector geometry to overcome this challenge for bulk specimens is demonstrated, and the use of a partial or defective detector for ptycholgaphic structural imaging is explored. Results show that structural information beyond the diffraction-limit and chemical information from the material can be extracted together, resulting in simultaneous multi-modal measurements, adding the additional dimensions of spectral information to 4D datasets.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Shaohong Cao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Karren L More
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
6
|
Chao HY, Venkatraman K, Moniri S, Jiang Y, Tang X, Dai S, Gao W, Miao J, Chi M. In Situ and Emerging Transmission Electron Microscopy for Catalysis Research. Chem Rev 2023. [PMID: 37327473 DOI: 10.1021/acs.chemrev.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalysts are the primary facilitator in many dynamic processes. Therefore, a thorough understanding of these processes has vast implications for a myriad of energy systems. The scanning/transmission electron microscope (S/TEM) is a powerful tool not only for atomic-scale characterization but also in situ catalytic experimentation. Techniques such as liquid and gas phase electron microscopy allow the observation of catalysts in an environment conducive to catalytic reactions. Correlated algorithms can greatly improve microscopy data processing and expand multidimensional data handling. Furthermore, new techniques including 4D-STEM, atomic electron tomography, cryogenic electron microscopy, and monochromated electron energy loss spectroscopy (EELS) push the boundaries of our comprehension of catalyst behavior. In this review, we discuss the existing and emergent techniques for observing catalysts using S/TEM. Challenges and opportunities highlighted aim to inspire and accelerate the use of electron microscopy to further investigate the complex interplay of catalytic systems.
Collapse
Affiliation(s)
- Hsin-Yun Chao
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Saman Moniri
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenpei Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| |
Collapse
|