1
|
Cavarocchi E, Drouault M, Ribeiro JC, Simon V, Whitfield M, Touré A. Human asthenozoospermia: Update on genetic causes, patient management, and clinical strategies. Andrology 2025. [PMID: 39748639 DOI: 10.1111/andr.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle, which contains dynein motor proteins that provide the mechanical force for sperm propulsion and motility. Primary motility of the sperm cells is acquired during their transit through the epididymis and hyperactivated motility is acquired throughout the journey in the female genital tract by a process called capacitation. These activation processes rely on the micro-environment of the genital tracts. In particular, during capacitation, a panoply of ion transporters located at the surface of the sperm cells mediate complex ion exchanges, which induce an increase in plasma membrane fluidity, the alkalinization of the cytoplasm and protein phosphorylation cascades that are compulsory for sperm hyperactivation and fertilization potential. As a consequence, both structural and functional defects of the sperm flagellum can affect sperm motility, resulting in asthenozoospermia, which constitutes the most predominant pathological condition associated with human male infertility. OBJECTIVES Herein, we have performed a literature review to provide a comprehensive description of the recent advances in the genetics of human asthenozoospermia. RESULTS AND DISCUSSION We describe the currently knowledge on gene mutations that affect sperm morphology and motility, namely, asthenoteratozoospermia; we also specify the gene mutations that exclusively affect sperm function and activation, resulting in functional asthenozoospermia. We discuss the benefit of this knowledge for patient and couple management, in terms of genetic counselling and diagnosis of male infertility as a sole phenotype or in association with ciliary defects. Last, we discuss the current strategies that have been initiated for the development of potential therapeutical and contraceptive strategies targeting genes that are essential for sperm function and activation.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
- Faculty of Medicine, Centre Hospitalier Universitaire de Québec-Research Center, Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, Canada
| | - Maëva Drouault
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Joao C Ribeiro
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Violaine Simon
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| |
Collapse
|
2
|
Lu Q, Ma J, Wei L, Fu J, Li X, Lai K, Li X, Xia B, Bin B, Tang A. Shenqi Qiangjing Granules Ameliorate Asthenozoospermia in Mice by Regulating Ferroptosis through the METTL3/GPX4 Signaling Axis. TOHOKU J EXP MED 2024; 264:9-19. [PMID: 38839357 DOI: 10.1620/tjem.2024.j040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Asthenozoospermia is a leading cause of male infertility, yet current pharmacotherapies yield suboptimal outcomes, underscoring the urgent need for novel treatment modalities. Herein, we induced asthenozoospermic mouse models using busulfan and investigated the therapeutic effects of Shenqi Qiangjing Granules (SQ) on testicular pathology, serum sex hormone and steroidogenic enzyme levels, and ferroptosis. Furthermore, utilizing GC-1 spg cell lines, we elucidated the role of the METTL3-mediated m6A modification in GPX4 mRNA stability. Treatment with SQ or Fer-1 (an inhibitor of ferroptosis) significantly ameliorated testicular pathological injury, restored abnormal serum sex hormone levels, and enhanced testicular steroidogenic enzyme expression, highlighting the therapeutic potential of targeting ferroptosis in asthenozoospermia. In elucidating the molecular mechanism of METTL3 in ferroptosis, we found that METTL3 regulates GPX4 mRNA stability, subsequently impacting ferroptosis and sperm quality. Knockdown of METTL3 mimicked the effects of SQ treatment, while overexpression of METTL3 partially reversed SQ-mediated effects on ferroptosis and asthenozoospermia, underscoring the pivotal role of METTL3 in SQ therapy. In conclusion, the METTL3-GPX4-ferroptosis axis emerges as a novel regulatory pathway in the pathogenesis of asthenozoospermia. Targeting this axis, particularly through interventions such as SQ treatment, holds promise for the management of male infertility.
Collapse
Affiliation(s)
- Qiuyu Lu
- Deptartment of Pharmacy, People's Hospital of Guangxi Zhuang Autonomous Region
| | - Jiabao Ma
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| | - Luying Wei
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| | - Jing Fu
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| | - Xiaoxia Li
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| | - Kedao Lai
- Guangxi Institute of Chinese Medicine and Pharmaceutical Science
| | - Xin Li
- Guangxi University of Chinese Medicine
| | | | - Bin Bin
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| | - Aicun Tang
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| |
Collapse
|
3
|
Gao XJ, Ciura K, Ma Y, Mikolajczyk A, Jagiello K, Wan Y, Gao Y, Zheng J, Zhong S, Puzyn T, Gao X. Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407793. [PMID: 39252670 DOI: 10.1002/adma.202407793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Indexed: 09/11/2024]
Abstract
The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano-bio interface. To enhance nanocarrier design, scientists employ both physics-based and data-driven models. Physics-based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data-driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejiao J Gao
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Krzesimir Ciura
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
- Department of Physical Chemistry, Medical University of Gdansk, Al. Gen. Hallera 107, Gdansk, 80-416, Poland
| | - Yuanjie Ma
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Alicja Mikolajczyk
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Karolina Jagiello
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Yuxin Wan
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Yurou Gao
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Shengliang Zhong
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| |
Collapse
|
4
|
Cheng Q, Chang Y, Zhang D, Zhao X, Xiao Z, Chen T, Shi C, Luo L. Biomineralization Synthesis of HoMn Nanoparticles for Ultrahigh-Field-Tailored and T1-T2 Dual-Mode MRI-Guided Cancer Theranostics. ACS NANO 2024; 18:27853-27868. [PMID: 39370780 DOI: 10.1021/acsnano.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ultrahigh field magnetic resonance imaging (UHF-MRI) (≥7 T) can dramatically boost image resolution and signal-to-noise ratio, which have distinct advantages in multifunctional imaging. However, their research and application are currently limited by the absence of high-field contrast agents (CAs) and the low sensitivity and accuracy of T1/T2 single-modality CAs. Therefore, the development of T1-T2 dual-mode CAs that respond to UHF-MRI and nanoformulations with therapeutic sensitization can bring ideas for the integrated application of precise and synchronous tumor theranostics. Herein, we present a biomimetic mineralization strategy for synthesizing holmium/manganese oxide-bovine serum albumin-photosensitizer chlorin e6 nanohybrids. The hybrid nanoparticles exhibited better tumor accumulation, a suitable time imaging window, and excellent pH-response T1-T2 dual-mode UHF-MRI performance. The antitumor effect comes from the amelioration of the hypoxic tumor microenvironment to promote the synergistic effect of photodynamic therapy and radiotherapy, along with negligible acute toxicity. Undoubtedly, this work not only provides a different perspective for developing multifunctional nanotherapeutics but also promotes the potential clinical exploitation and translation of UHF CAs.
Collapse
Affiliation(s)
- Qingqing Cheng
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
| | - Yanzhou Chang
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
| | - Dong Zhang
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
- The Shunde Affiliated Hospital, Jinan University, Foshan 528300, China
| | - Xiangsheng Zhao
- Department of Radiology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen 529099, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
| | - Tianfeng Chen
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
- Guangdong No. 2 Provincial People's Hospital, Jinan University, Guangzhou 510310, China
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
- Guangdong No. 2 Provincial People's Hospital, Jinan University, Guangzhou 510310, China
| |
Collapse
|
5
|
Guo X, Xu J, Lu X, Zheng X, Chen X, Sun Z, Shen B, Tang H, Duan Y, Zhou Z, Feng X, Chen Y, Wang J, Pang J, Jiang Q, Huang B, Gu N, Li J. Chenodeoxycholic Acid-Modified Polyethyleneimine Nano-Composites Deliver Low-Density Lipoprotein Receptor Genes for Lipid-Lowering Therapy by Targeting the Liver. Adv Healthc Mater 2024; 13:e2400254. [PMID: 38857027 DOI: 10.1002/adhm.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Lipid-lowering drugs, especially statins, are extensively utilized in clinical settings for the prevention of hyperlipidemia. Nevertheless, prolonged usage of current lipid-lowering medications is associated with significant adverse reactions. Therefore, it is imperative to develop novel therapeutic agents for lipid-lowering therapy. In this study, a chenodeoxycholic acid and lactobionic acid double-modified polyethyleneimine (PDL) nanocomposite as a gene delivery vehicle for lipid-lowering therapy by targeting the liver, are synthesized. Results from the in vitro experiments demonstrate that PDL exhibits superior transfection efficiency compared to polyethyleneimine in alpha mouse liver 12 (AML12) cells and effectively carries plasmids. Moreover, PDL can be internalized by AML12 cells and rapidly escape lysosomal entrapment. Intravenous administration of cyanine5.5 (Cy5.5)-conjugated PDL nanocomposites reveals their preferential accumulation in the liver compared to polyethyleneimine counterparts. Systemic delivery of low-density lipoprotein receptor plasmid-loaded PDL nanocomposites into mice leads to reduced levels of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TC) in the bloodstream without any observed adverse effects on mouse health or well-being. Collectively, these findings suggest that low-density lipoprotein receptor plasmid-loaded PDL nanocomposites hold promise as potential therapeutics for lipid-lowering therapy.
Collapse
Affiliation(s)
- Xiaotang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jiming Xu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiyuan Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaoyan Zheng
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, 225001, P. R. China
| | - Zhenning Sun
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Beilei Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Hao Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yiman Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Zhengwei Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xu Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Junjie Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jing Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Bin Huang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, P. R. China
| |
Collapse
|
6
|
Zhao F, Fan M, Jing Z, Zhang Y, Wang Y, Zhou C, Liu Y, Aitken RJ, Xia X. Engineered nanoparticles potentials in male reproduction. Andrology 2024. [PMID: 39120563 DOI: 10.1111/andr.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The escalating prevalence of fertility problems in the aging population necessitates a comprehensive exploration of contributing factors, extending beyond environmental concerns, work-related stress, and unhealthy lifestyles. Among these, the rising incidence of testicular disorders emerges as a pivotal determinant of fertility issues. Current treatment challenges are underscored by the limitations of high-dose and frequent drug administration, coupled with substantial side effects and irreversible trauma inflicted by surgical interventions on testicular tissue. MATERIAL AND METHODS The formidable barrier posed by the blood-testis barrier compounds the complexities of treating testicular diseases, presenting a significant therapeutic obstacle. The advent of nanocarriers, with their distinctive attributes, holds promise in overcoming this impediment. These nanocarriers exhibit exceptional biocompatibility, and membrane penetration capabilities, and can strategically target the blood-testis barrier through surface ligand modification, thereby augmenting drug bioavailability and enhancing therapeutic efficacy. RESULTS AND DISCUSSION This review concentrates on the transformative potential of nanocarriers in the delivery of therapeutic agents to testicular tissue. By summarizing key applications, we illuminate the strides made in utilizing nanocarriers as a novel avenue to effectively treat testicular diseases. CONCLUSIONS Nanocarriers are critical in delivering therapeutic agents to testicular tissue.
Collapse
Affiliation(s)
- Feifei Zhao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengyu Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Zhiyang Jing
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yanxu Zhang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yanlin Wang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Congli Zhou
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yang Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| | - Robert John Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and Environmental Science, University of Newcastle, Callaghan, Australia
| | - Xue Xia
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| |
Collapse
|
7
|
Weng PW, Liu CH, Jheng PR, Chiang CC, Chen YT, Rethi L, Hsieh YSY, Chuang AEY. Spermatozoon-propelled microcellular submarines combining innate magnetic hyperthermia with derived nanotherapies for thrombolysis and ischemia mitigation. J Nanobiotechnology 2024; 22:470. [PMID: 39118029 PMCID: PMC11308583 DOI: 10.1186/s12951-024-02716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Thrombotic cardiovascular diseases are a prevalent factor contributing to both physical impairment and mortality. Thrombolysis and ischemic mitigation have emerged as leading contemporary therapeutic approaches for addressing the consequences of ischemic injury and reperfusion damage. Herein, an innovative cellular-cloaked spermatozoon-driven microcellular submarine (SPCS), comprised of multimodal motifs, was designed to integrate nano-assembly thrombolytics with an immunomodulatory ability derived from innate magnetic hyperthermia. Rheotaxis-based navigation was utilized to home to and cross the clot barrier, and finally accumulate in ischemic vascular organs, where the thrombolytic motif was "switched-on" by the action of thrombus magnetic red blood cell-driven magnetic hyperthermia. In a murine model, the SPCS system combining innate magnetic hyperthermia demonstrated the capacity to augment delivery efficacy, produce nanotherapeutic outcomes, exhibit potent thrombolytic activity, and ameliorate ischemic tissue damage. These findings underscore the multifaceted potential of our designed approach, offering both thrombolytic and ischemia-mitigating effects. Given its extended therapeutic effects and thrombus-targeting capability, this biocompatible SPCS system holds promise as an innovative therapeutic agent for enhancing efficacy and preventing risks after managing thrombosis.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Alba Nova University Centre, Stockholm, SE106 91, Sweden
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
8
|
Wang Z, Xu X, Zhu Y, Qian Y, Feng Y, Li H, Hu G. Preparation and brain targeting effects study of recombinant human ferritin nanoparticles. Biochem Biophys Res Commun 2024; 712-713:149939. [PMID: 38640729 DOI: 10.1016/j.bbrc.2024.149939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Human heavy-chain ferritin is a naturally occurring protein with high stability and multifunctionality in biological systems. This study aims to utilize a prokaryotic expression system to produce recombinant human heavy-chain ferritin nanoparticles and investigate their targeting ability in brain tissue. The human heavy-chain ferritin gene was cloned into the prokaryotic expression vector pET28a and transformed into Escherichia coli BL21 (DE3) competent cells to explore optimal expression conditions. The recombinant protein was then purified to evaluate its immunoreactivity and characteristics. Additionally, the distribution of the administered protein in normal mice and its permeability in an in vitro blood-brain barrier (BBB) model were measured. The results demonstrate that the purified protein can self-assemble extracellularly into nano-cage structures of approximately 10 nm and is recognized by corresponding antibodies. The protein effectively penetrates the blood-brain barrier and exhibits slow clearance in mouse brain tissue, showing excellent permeability in the in vitro BBB model. This study highlights the stable expression of recombinant human heavy-chain ferritin using the Escherichia coli prokaryotic expression system, characterized by favorable nano-cage structures and biological activity. Its exceptional brain tissue targeting and slow metabolism lay an experimental foundation for its application in neuropharmaceutical delivery and vaccine development fields.
Collapse
Affiliation(s)
- Zhixian Wang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China; First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Guoheng Hu
- First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
9
|
López-González I, Oseguera-López I, Castillo R, Darszon A. Influence of extracellular ATP on mammalian sperm physiology. Reprod Fertil Dev 2024; 36:RD23227. [PMID: 38870344 DOI: 10.1071/rd23227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
In addition to its central role in cellular metabolism, adenosine 5'-triphosphate (ATP) is an important extracellular signalling molecule involved in various physiological processes. In reproduction, extracellular ATP participates in both autocrine and paracrine paths regulating gametogenesis, gamete maturation and fertilisation. This review focusses on how extracellular ATP modulates sperm physiology with emphasis on the mammalian acrosome reaction. The presence of extracellular ATP in the reproductive tract is primarily determined by the ion channels and transporters that influence its movement within the cells comprising the tract. The main targets of extracellular ATP in spermatozoa are its own transporters, particularly species-specific sperm purinergic receptors. We also discuss notable phenotypes from knock-out mouse models and human Mendelian inheritance related to ATP release mechanisms, along with immunological, proteomic, and functional observations regarding sperm purinergic receptors and their involvement in sperm signalling.
Collapse
Affiliation(s)
- I López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - I Oseguera-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - R Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| |
Collapse
|
10
|
Yu X, Shuai J, Meng G, Zhou S, Wijayaraja AU, Zhao Y, Yao L, Yao R, Yang X, Zhang T, Wang L, Gu P, Zhang P, Sun F. Ferritin-nanocaged aggregation-induced emission nanoaggregates for NIR-II fluorescence-guided noninvasive, controllable male contraception. Mater Today Bio 2024; 25:100995. [PMID: 38384792 PMCID: PMC10879778 DOI: 10.1016/j.mtbio.2024.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Controllable contraception in male animals was demonstrated through the utilization of gold nanorods' photothermal effect to accomplish mild testicular hyperthermia. However, the challenges arising from testicular administration and the non-biodegradability of nanoparticles hinder further clinical implementation. Therefore, a straightforward, non-invasive, and enhanced contraception approach is required. This study explores the utilization of human heavy chain ferritin (HFn) nanocarriers loaded with aggregation-induced emission luminogens (AIEgens) for noninvasive, controllable male contraception guided by Near-Infrared-II (NIR-II) fluorescence imaging. The HFn-caged AIEgens (HFn@BBT) are delivered via intravenous injection and activated by near-infrared irradiation. Lower hyperthermia treatment induces partial damage to the testes and seminiferous tubules, reducing fertility indices by approximately 100% on the 7th day, which gradually recovers to 80% on the 60th day. Conversely, implementation of elevated hyperthermia therapy causes total destruction of both testes and seminiferous tubules, leading to a complete loss of fertility on the 60th day. Additionally, the use of AIEgens in NIR-II imaging offers improved fluorescence efficiency and penetration depth. The findings of this study hold significant promise for the advancement of safe and effective male contraceptive methods, addressing the need for noninvasive and controllable approaches to reproductive health and population control.
Collapse
Affiliation(s)
- Xinghua Yu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Jiaxue Shuai
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Ge Meng
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Shumin Zhou
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Amali Upekshika Wijayaraja
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Yixiang Zhao
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Lei Yao
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Rui Yao
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianfu Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, China
| | - Liying Wang
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Pengyu Gu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
11
|
Xia H, Xu H, Wang J, Wang C, Chen R, Tao T, Xu S, Zhang J, Ma K, Wang J. Heat sensitive E-helix cut ferritin nanocages for facile and high-efficiency loading of doxorubicin. Int J Biol Macromol 2023; 253:126973. [PMID: 37729988 DOI: 10.1016/j.ijbiomac.2023.126973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Ferritin possesses a stable and uniform cage structure, along with tumor-targeting properties and excellent biocompatibility, making it a promising drug delivery vehicle. However, the current ferritin drug loading strategy involves complex steps and harsh reaction conditions, resulting in low yield and recovery of drug loading, which limits the clinical application prospects of ferritin nanomedicine. In this study, we utilized the high-efficiency heat-sensitivity of the multiple channel switch structures of the E-helix-cut ferritin mutant (Ecut-HFn) and Cu2+ assistance to achieve high-efficiency loading of chemotherapeutic drugs in a one-step process at low temperatures. This method features mild reaction conditions (45 °C), high loading efficiency (about 110 doxorubicin (Dox) per Ecut-HFn), and improved protein and Dox recovery rates (with protein recovery rate around 94 % and Dox recovery rate reaching up to 45 %). The prepared ferritin-Dox particles (Ecut-HFn-Cu-Dox) exhibit a uniform size distribution, good stability, and retain the natural tumor targeting ability of ferritin. Overall, this temperature-controlled drug loading strategy utilizing heat-sensitivity ferritin mutants is energy-saving, environmentally friendly, efficient, and easy to operate, offering a new perspective for scaling up the industrial production of ferritin drug carriers.
Collapse
Affiliation(s)
- Haining Xia
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Huangtao Xu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Jiarong Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Changhao Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Ruiguo Chen
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Tongxiang Tao
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Shuai Xu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Jing Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Kun Ma
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
12
|
Hu J, Sha X, Li Y, Wu J, Ma J, Zhang Y, Yang R. Multifaceted Applications of Ferritin Nanocages in Delivering Metal Ions, Bioactive Compounds, and Enzymes: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19903-19919. [PMID: 37955969 DOI: 10.1021/acs.jafc.3c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Ferritin, a distinctive iron-storage protein, possesses a unique cage-like nanoscale structure that enables it to encapsulate and deliver a wide range of biomolecules. Recent advances prove that ferritin can serve as an efficient 8 nm diameter carrier for various bioinorganic nutrients, such as minerals, bioactive polyphenols, and enzymes. This review offers a comprehensive summary of ferritin's structural features from different sources and emphasizes its functions in iron supplementation, calcium delivery, single- and coencapsulation of polyphenols, and enzyme package. Additionally, the influence of innovative food processing technologies, including manothermosonication, pulsed electric field, and atmospheric cold plasma, on the structure and function of ferritin are examined. Furthermore, the limitations and prospects of ferritin in food and nutritional applications are discussed. The exploration of ferritin as a multifunctional protein with the capacity to load various biomolecules is crucial to fully harnessing its potential in food applications.
Collapse
Affiliation(s)
- Jiangnan Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jincan Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
13
|
Li Y, Gao H, Nepovimova E, Wu Q, Adam V, Kuca K. Recombinant ferritins for multimodal nanomedicine. J Enzyme Inhib Med Chem 2023; 38:2219868. [PMID: 37263586 DOI: 10.1080/14756366.2023.2219868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
In all living organisms, ferritins are a group of proteins important for maintaining iron homeostasis. Increasing amount of studies has shown that recombinant ferritins can be widely used in multimodal nanomedicine, especially for anticancer treatment and vaccination. Recombinant particles prepared by fusing viral proteins and ferritin subunits produce a better immune response and higher antibody titres. Moreover, actively-targeted ferritin nanoparticles can recognise receptors and deliver natural or chemical drugs specifically to the tumour tissue. In addition, ferritin-linked or loaded with contrast agents or fluorescent dyes can be used as multimodal particles useful cancer theranostics. In this review, we fully summarised the unitisation of recombinant ferritins in multimodal nanomedicine. The research progress of using recombinant ferritins as nanovaccines, nanozymes, and bioengineered nanocarriers for targeted therapy and bioimaging is emphasised.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Chen Y, Xu D, Ma Y, Chen P, Hu J, Chen D, Yu W, Han X. Sertoli cell-derived extracellular vesicles traverse the blood-testis barrier and deliver miR-24-3p inhibitor into germ cells improving sperm mobility. J Control Release 2023; 362:58-69. [PMID: 37595666 DOI: 10.1016/j.jconrel.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Asthenozoospermia, characterized by poor sperm motility, is a common cause of male infertility. Improving energy metabolism and alleviating oxidative stress through drug regimens are potential therapeutic strategies. In this study, we observed upregulated miR-24-3p levels in asthenozoospermia spermatozoa, contributing to energy metabolism disorder and oxidative stress by reducing GSK3β expression. Thus, reducing miR-24-3p levels using drugs is expected to improve sperm motility. The blood-testis barrier (BTB) protects the testis from xenobiotics and drugs. In this study, we found that Sertoli cell-derived small extracellular vesicles (SC-sEV) can traverse the BTB and enter germ cells. We successfully loaded miR-24-3p inhibitor into SC-sEV, creating the nano-drug SC-sEV@miR-24-3p inhibitor, which effectively delivers miR-24-3p inhibitor into germ cells. In a gossypol-induced mouse asthenozoospermia model, administration of SC-sEV@miR-24-3p inhibitor significantly improved sperm motility, in vitro fertilization success, and blastocyst formation rates. As anticipated, it also improved the litter size of asthenozoospermia mice. These results suggest that SC-sEV@miR-24-3p inhibitor holds promise as a potential clinical treatment for asthenospermia.
Collapse
Affiliation(s)
- Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Peilin Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jianhang Hu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Deyan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.
| | - Wen Yu
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Zhou Z, Liu H, Ye M. Research progress on the nucleoside/nucleotide-loaded nanomedicines. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:279-284. [PMID: 37476939 PMCID: PMC10409901 DOI: 10.3724/zdxbyxb-2022-0701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
Nucleoside drugs play an essential role in treating major diseases such as tumor and viral infections, and have been widely applied in clinics. However, the effectiveness and application of nucleoside drugs are significantly limited by their intrinsic properties such as low bioavailability, lack of targeting ability, and inability to enter the cells. Nanocarriers can improve the physiological properties of nucleoside drugs by improving drug delivery efficiency and availability, maintaining drug efficacy and system stability, adjusting the binding ability of the carrier and drug molecules, as well as modifying specific molecules to achieve active targeting. Starting from the design strategy of nucleoside drug nanodelivery systems, the design and therapeutic effect of these nanomedicines are described in this review, and the future development directions of nucleoside/nucleotide-loaded nanomedicines are also discussed.
Collapse
Affiliation(s)
- Zheng Zhou
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, China.
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
| | - Haifang Liu
- The Second Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, Zhengzhou 450000, China
| | - Mingzhou Ye
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, China.
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
16
|
Zhu Y, Zhu Y, Cao T, Liu X, Liu X, Yan Y, Shi Y, Wang JC. Ferritin-based nanomedicine for disease treatment. MEDICAL REVIEW (2021) 2023; 3:49-74. [PMID: 37724111 PMCID: PMC10471093 DOI: 10.1515/mr-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 09/20/2023]
Abstract
Ferritin is an endogenous protein which is self-assembled by 24 subunits into a highly uniform nanocage structure. Due to the drug-encapsulating ability in the hollow inner cavity and abundant modification sites on the outer surface, ferritin nanocage has been demonstrated great potential to become a multi-functional nanomedicine platform. Its good biocompatibility, low toxicity and immunogenicity, intrinsic tumor-targeting ability, high stability, low cost and massive production, together make ferritin nanocage stand out from other nanocarriers. In this review, we summarized ferritin-based nanomedicine in field of disease diagnosis, treatment and prevention. The different types of drugs to be loaded in ferritin, as well as drug-loading methods were classified. The strategies for site-specific and non-specific functional modification of ferritin were investigated, then the application of ferritin for disease imaging, drug delivery and vaccine development were discussed. Finally, the challenges restricting the clinical translation of ferritin-based nanomedicines were analyzed.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuefeng Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tianmiao Cao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Laboratory of Innovative Formulations and Pharmaceutical Excipients, Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| |
Collapse
|
17
|
Zhao Y, Zhang H, Cui JG, Wang JX, Chen MS, Wang HR, Li XN, Li JL. Ferroptosis is critical for phthalates driving the blood-testis barrier dysfunction via targeting transferrin receptor. Redox Biol 2023; 59:102584. [PMID: 36580806 DOI: 10.1016/j.redox.2022.102584] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The global rate of human male infertility is rising at an alarming rate owing to environmental and lifestyle changes. Phthalates are the most hazardous chemical additives in plastics and have an apparently negative impact on the function of male reproductive system. Ferroptosis is a recently described form of iron-dependent cell death and has been linked to several diseases. Transferrin receptor (TfRC), a specific ferroptosis marker, is a universal iron importer for all cells using extracellular transferrin. We aim to investigate the potential involvement of ferroptosis during male reproductive toxicity, and provide means for drawing conclusions on the effect of ferroptosis in phthalates-induced male reproductive disease. In this study, we found that di (2-ethylhexyl) phthalate (DEHP) triggered blood-testis barrier (BTB) dysfunction in the mouse testicular tissues. DEHP also induced mitochondrial morphological changes and lipid peroxidation, which are manifestations of ferroptosis. As the primary metabolite of DEHP, mono-2-ethylhexyl phthalate (MEHP) induced ferroptosis by inhibiting glutathione defense network and increasing lipid peroxidation. TfRC knockdown blocked MEHP-induced ferroptosis by decreasing mitochondrial and intracellular levels of Fe2+. Our findings indicate that TfRC can regulate Sertoli cell ferroptosis and therefore is a novel therapeutic molecule for reproductive disorders in male patients with infertility.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao-Ran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
18
|
Ferritin nanocage based delivery vehicles: From single-, co- to compartmentalized- encapsulation of bioactive or nutraceutical compounds. Biotechnol Adv 2022; 61:108037. [PMID: 36152892 DOI: 10.1016/j.biotechadv.2022.108037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Bioactive or nutraceutical ingredients have been widely used in pursuit of health and well-being. However, the environmental instability, poor solubility and bioavailability, and unspecific delivery highly limited their practical values. By virtue of the unique shell-like structure, definite disassembly/reassembly behavior, and excellent safety profile of ferritin protein, it stands out among of various nano-materials and is emerging as one of the most promising vehicles for the encapsulation and delivery of bioactive ingredients or drugs. In this review, we present a systematic overview of recent advances of ferritin-based delivery systems from single-encapsulation, co-encapsulation, to compartmentalized-encapsulation of bioactive ingredients or drugs. Different encapsulation strategies for cargo loading as well as their advantages and drawbacks have been critically reviewed. This study emphasized the importance of the construction of compartmentalized delivery systems through the usage of ferritin nanocages, which exhibit great potential for facilitating the synergistic functionality of different types of cargos. Lastly, the applications of ferritin nanocages for physicochemical improvements and functionality achievements of loaded cargos are summarized. In conclusion, ferritin protein nanocages not only are excellent nanocarriers, but also can act as"multi-seated" vehicles for co-encapsulation and compartmentalized encapsulation of different cargos simultaneously.
Collapse
|