1
|
Yu J, Mu H, Wang P, Li H, Yang Z, Ren J, Li Y, Mei L, Zhang J, Yu W, Cui N, Yuan J, Wu J, Lan S, Zhang G, Lin S. Anisotropic van der Waals Tellurene-Based Multifunctional, Polarization-Sensitive, In-Line Optical Device. ACS NANO 2024; 18:19099-19109. [PMID: 39001858 DOI: 10.1021/acsnano.4c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Polarization plays a paramount role in scaling the optical network capacity. Anisotropic two-dimensional (2D) materials offer opportunities to exploit optical polarization-sensitive responses in various photonic and optoelectronic applications. However, the exploration of optical anisotropy in fiber in-line devices, critical for ultrafast pulse generation and modulation, remains limited. In this study, we present a fiber-integrated device based on a single-crystalline tellurene nanosheet. Benefiting from the chiral-chain crystal lattice and distinct optical dichroism of tellurene, multifunctional optical devices possessing diverse excellent properties can be achieved. By inserting the in-line device into a 1.5 μm fiber laser cavity, we generated both linearly polarized and dual-wavelength mode-locking pulses with a degree of polarization of 98% and exceptional long-term stability. Through a twisted configuration of two tellurene nanosheets, we realized an all-optical switching operation with a fast response. The multifunctional device also serves as a broadband photodetector. Notably, bipolar polarization encoding communication at 1550 nm can be achieved without any external voltage. The device's multifunctionality and stability in ambient environments established a promising prototype for integrating polarization as an additional physical dimension in fiber optical networks, encompassing diverse applications in light generation, modulation, and detection.
Collapse
Affiliation(s)
- Jing Yu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Haoran Mu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Pu Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Haozhe Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Zixin Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Jing Ren
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yang Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Luyao Mei
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Jingni Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Nan Cui
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Jian Yuan
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
2
|
Yang Z, Yu Q, Wu J, Deng H, Zhang Y, Wang W, Xian T, Huang L, Zhang J, Yuan S, Leng J, Zhan L, Jiang Z, Wang J, Zhang K, Zhou P. Ultrafast laser state active controlling based on anisotropic quasi-1D material. LIGHT, SCIENCE & APPLICATIONS 2024; 13:81. [PMID: 38584173 PMCID: PMC11251271 DOI: 10.1038/s41377-024-01423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Laser state active controlling is challenging under the influence of inherent loss and other nonlinear effects in ultrafast systems. Seeking an extension of degree of freedom in optical devices based on low-dimensional materials may be a way forward. Herein, the anisotropic quasi-one-dimensional layered material Ta2PdS6 was utilized as a saturable absorber to modulate the nonlinear parameters effectively in an ultrafast system by polarization-dependent absorption. The polarization-sensitive nonlinear optical response facilitates the Ta2PdS6-based mode-lock laser to sustain two types of laser states, i.e., conventional soliton and noise-like pulse. The laser state was switchable in the single fiber laser with a mechanism revealed by numerical simulation. Digital coding was further demonstrated in this platform by employing the laser as a codable light source. This work proposed an approach for ultrafast laser state active controlling with low-dimensional material, which offers a new avenue for constructing tunable on-fiber devices.
Collapse
Affiliation(s)
- Zixin Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Qiang Yu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Yan Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenchao Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Tianhao Xian
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luyi Huang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Junrong Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shuai Yuan
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyong Leng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Li Zhan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zongfu Jiang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Junyong Wang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Kai Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Pu Zhou
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| |
Collapse
|
3
|
Li G, Feng Y, Li L, Du W, Liu H, Sun X, Zhao X, Ma Y, Jia Y, Chen F. Broadband nonlinear optical response and sub-picosecond carrier dynamics in graphene-SnSe 2 van der Waals heterostructures. OPTICS EXPRESS 2024; 32:2867-2883. [PMID: 38297805 DOI: 10.1364/oe.515354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
The van der Waals (vdWs) heterostructures, with vertical layer stacking structure of various two-dimensional (2D) materials, maintain the reliable photonic characteristics while compensating the shortcomings of the participating individual components. In this work, we combine the less-studied multilayer tin selenide (SnSe2) thin film with one of the traditional 2D materials, graphene, to fabricate the graphene-based vdWs optical switching element (Gr-SnSe2) with superior broadband nonlinear optical response. The transient absorption spectroscopy (TAS) measurement results verify that graphene acts as the recombination channel for the photogenerated carrier in the Gr-SnSe2 sample, and the fast recovery time can be reduced to hundreds of femtoseconds which is beneficial for the optical modulation process. The optical switching properties are characterized by the I-scan measurements, exhibiting a saturable energy intensity of 2.82 mJ·cm-2 (0.425 µJ·cm-2) and a modulation depth of 15.6% (22.5%) at the wavelength of 1030 nm (1980nm). Through integrating Gr-SnSe2 with a cladding waveguide, high-performance picosecond Q-switched operation in the near-infrared (NIR) and mid-infrared (MIR) spectral regions are both achieved. This work experimentally demonstrates the great potential of graphene-based vdWs heterostructures for applications in broadband ultrafast photonics.
Collapse
|
4
|
Han J, Wang F, Zhang Y, Deng W, Dai M, Hu F, Chen W, Cui J, Zhang C, Zhu S, Wang C, Ye M, Han S, Luo Y, Zhai T, Wang J, Wang QJ. Mid-Infrared Bipolar and Unipolar Linear Polarization Detections in Nb 2 GeTe 4 /MoS 2 Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305594. [PMID: 37740257 DOI: 10.1002/adma.202305594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Detecting and distinguishing light polarization states, one of the most basic elements of optical fields, have significant importance in both scientific studies and industry applications. Artificially fabricated structures, e.g., metasurfaces with anisotropic absorptions, have shown the capabilities of detecting polarization light and controlling. However, their operations mainly rely on resonant absorptions based on structural designs that are usually narrow bands. Here, a mid-infrared (MIR) broadband polarization photodetector with high PRs and wavelength-dependent polarities using a 2D anisotropic/isotropic Nb2 GeTe4 /MoS2 van der Waals (vdWs) heterostructure is demonstrated. It is shown that the photodetector exhibits high PRs of 48 and 34 at 4.6 and 11.0 µm wavelengths, respectively, and even a negative PR of -3.38 for 3.7 µm under the zero bias condition at room temperature. Such interesting results can be attributed to the superimposed effects of a photovoltaic (PV) mechanism in the Nb2 GeTe4 /MoS2 hetero-junction region and a bolometric mechanism in the MoS2 layer. Furthermore, the photodetector demonstrates its effectiveness in bipolar and unipolar polarization encoding communications and polarization imaging enabled by its unique and high PRs.
Collapse
Affiliation(s)
- Jiayue Han
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fakun Wang
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yue Zhang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenjie Deng
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mingjin Dai
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Fangchen Hu
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wenduo Chen
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jieyuan Cui
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chaoyi Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Song Zhu
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chongwu Wang
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Ye
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Song Han
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yu Luo
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jun Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qi Jie Wang
- Center for Optoelectronics and Biophotonics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Physical and Mathematical Science, and, Photonics Institute, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Pang L, Wang R, Zhao Q, Zhao M, Jiang L, Zhang X, Wu R, Lv Y, Liu W. InSb-based saturable absorbers for ultrafast photonic applications. NANOSCALE 2023. [PMID: 37470403 DOI: 10.1039/d3nr01416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Sb-related III-V compounds have recently gained great research interest owing to their excellent optical and electrical characteristics, which provide many possibilities in photonics and electronics. This study investigated the application of InSb films in ultrafast photonics. An InSb film was fabricated on the tapered zone of a microfiber, and its saturation intensity, modulation depth, and non-saturable loss were determined as 119.8 MW cm-2, 23.5%, and 27.3%, respectively. The structure of the electronic band and density of states of InSb were theoretically calculated. Notably, mode-locked and Q-switched fiber lasers were realised by incorporating the InSb-microfiber device into two different Er-doped fiber cavities. In the Q-switching state, the narrowest pulse duration was measured as 1.756 μs with a maximum single-pulse energy of 221.95 nJ and a signal-to-noise ratio of 60 dB. In the mode-locking operation, ultrafast lasers with a high signal-to-noise ratio (70 dB), a pulse width as narrow as 265 fs and a repetition rate of 49.51 MHz were acquired. Besides, the second-harmonic mode-locked state was built with an output power of 13.22 mW. In comparison with the reported laser performance with 2D materials as saturable absorbers, the InSb-based mode-locked and Q-switched fiber lasers proposed herein exhibit better comprehensive performance.
Collapse
Affiliation(s)
- Lihui Pang
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Rongfeng Wang
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiyi Zhao
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Meng Zhao
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Le Jiang
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaogang Zhang
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Rongqian Wu
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Lv
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenjun Liu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| |
Collapse
|
6
|
Zhang Y, Yang X, Dai Y, Yu W, Yang L, Zhang J, Yu Q, Dong Z, Huang L, Chen C, Hou X, Wang X, Li J, Zhang K. Ternary GePdS 3: 1D van der Waals Nanowires for Integration of High-Performance Flexible Photodetectors. ACS NANO 2023; 17:8743-8754. [PMID: 37104062 DOI: 10.1021/acsnano.3c01977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
One-dimensional (1D) van der Waals (vdW) materials are anticipated to leverage for high-performance, giant polarized, and hybrid-dimension photodetection owing to their dangling-bond free surface, intrinsic crystal structure, and weak vdW interaction. However, only a few related explorations have been conducted, especially in the field of flexible and integrated applications. Here, high-quality 1D vdW GePdS3 nanowires were synthesized and proven to be an n-type semiconductor. The Raman vibration and band gap (1.37-1.68 eV, varying from bulk to single chain) of GePdS3 were systemically studied by experimental and theoretical methods. The photodetector based on a single GePdS3 nanowire possesses fast photoresponse at a broadband spectrum of 254-1550 nm. The highest responsivity and detectivity reach up to ∼219 A/W and ∼2.7 × 1010 Jones (under 254 nm light illumination), respectively. Furthermore, an image sensor with 6 × 6 pixels based on GePdS3 nanowires is integrated on a flexible polyethylene terephthalate (PET) substrate and exhibits sensitive and homogeneous detection at 808 nm light. These results indicate that the ternary noble metal chalcogenides show great potential in flexible and broadband optoelectronics applications.
Collapse
Affiliation(s)
- Yan Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaoxin Yang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yongping Dai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Guangdong 523000, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Liu Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junrong Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Qiang Yu
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhuo Dong
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Luyi Huang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Cheng Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingang Hou
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Jie Li
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Kai Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Li J, Wang L, Chen Y, Li Y, Zhu H, Li L, Tong L. Interfacial Charge Transfer and Ultrafast Photonics Application of 2D Graphene/InSe Heterostructure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:147. [PMID: 36616059 PMCID: PMC9824543 DOI: 10.3390/nano13010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Interface interactions in 2D vertically stacked heterostructures play an important role in optoelectronic applications, and photodetectors based on graphene/InSe heterostructures show promising performance nowadays. However, nonlinear optical property studies based on the graphene/InSe heterostructure are insufficient. Here, we fabricated a graphene/InSe heterostructure by mechanical exfoliation and investigated the optically induced charge transfer between graphene/InSe heterostructures by taking photoluminescence and pump-probe measurements. The large built-in electric field at the interface was confirmed by Kelvin probe force microscopy. Furthermore, due to the efficient interfacial carrier transfer driven by the built-in electric potential (~286 meV) and broadband nonlinear absorption, the application of the graphene/InSe heterostructure in a mode-locked laser was realized. Our work not only provides a deeper understanding of the dipole orientation-related interface interactions on the photoexcited charge transfer of graphene/InSe heterostructures, but also enriches the saturable absorber family for ultrafast photonics application.
Collapse
Affiliation(s)
- Jialin Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lizhen Wang
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuzhong Chen
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yujie Li
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haiming Zhu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Limin Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| |
Collapse
|
8
|
Liu F, Xu J, Wang T, Yu Q, Wang W, Zhang Y, Wu J, Zhu S. Multiconfiguration b-AsP-based doping systems with enriched elements (C and O): novel materials for spintronic devices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:045502. [PMID: 36541476 DOI: 10.1088/1361-648x/aca6c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Black arsenical phosphorus (b-AsP), a derivative of black phosphorus, is a bimetallic alloy compound with the advantage of high carrier mobility, high stability, and tailorable configuration. However, lack of an effective tool to facilitate the application of AsP as a magnetic device. Herein, band gap modulation and the introduction of magnetism can be achieved by doping non-metallic atoms in three different AsP configurations. And the doping of the same atom will cause variation in the electronic structure depending on the configuration. Surprisingly, doping with both enriched elements C and O transforms AsP into a magnetic material. Furthermore, the source of the magnetic moment is explained by solving the wave function of the doped AsP, which is caused by the orbital coupling of the C and O atoms to AsP. To excavate the potentials of this magnetic AsP system for magnetic devices, field-effect transistors based on two doped armchair AsP3 nanoribbons are simulated. The devices show considerable negative differential conductivity effect and good spin filtering efficiency. These findings suggest that AsP doping with enriched elements C and O could be an excellent candidate for future spintronics applications.
Collapse
Affiliation(s)
- Fangqi Liu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, The State Key Laboratory for Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Jialu Xu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, The State Key Laboratory for Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Tongtong Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, The State Key Laboratory for Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Qiang Yu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, People's Republic of China
- Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Wenyue Wang
- Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Yong Zhang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, The State Key Laboratory for Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Sicong Zhu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, The State Key Laboratory for Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| |
Collapse
|