1
|
Gupta RK, Wang Z, Mohan B, Tung CH, Sun D. Advancements in Atomically Precise Nanocluster Protected by Thiacalix[4]arene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410054. [PMID: 39226533 DOI: 10.1002/adma.202410054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Coinage metal nanoclusters (NCs), comprising a few to several hundred atoms, are prized for their size-dependent properties crucial in catalysis, sensing, and biomedicine. However, their practical application is often hindered by stability and reactivity challenges. Thiacalixarene, a macrocyclic ligand, shows promise in stabilizing silver, copper, and bimetallic NCs, enhancing their structural integrity and chemical stability. This investigation delves into the unique properties of thiacalix[4]arene and their role in bolstering NC stability, catalytic efficiency, and sensing capabilities. The current challenges and future prospects are critically evaluated, underscoring the transformative impact of thiacalix[4]arene in nanoscience. This review aims to broaden the utilization of atomically precise coinage metal NCs, unlocking new avenues across scientific and industrial applications.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhi Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
2
|
Li Q, Gao W, Wang Z, Liu W, Fu Y, Wang X, Tan LL, Shang L, Yang YW. Guest-Induced Helical Superstructure from a Gold Nanocluster-Based Supramolecular Organic Framework Enables Efficient Catalysis. ACS NANO 2024; 18:22548-22559. [PMID: 39110641 DOI: 10.1021/acsnano.4c08337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mimicking hierarchical assembly in nature to exploit atomically precise artificial systems with complex structures and versatile functions remains a long-standing challenge. Herein, we report two single-crystal supramolecular organic frameworks (MSOF-4 and MSOF-5) based on custom-designed atomically precise gold nanoclusters Au11(4-Mpy)3(PPh3)7, showing distinct and intriguing host-guest adaptation behaviors toward 1-/2-bromopropane (BPR) isomers. MSOF-4 exhibits sev topology and cylindrical channels with 4-mercaptopyridine (4-Mpy) ligands matching well with guest 1-BPR. Due to the confinement effect, solid MSOF-4 undergoes significant structural change upon selective adsorption of 1-BPR vapor over 2-BPR, resulting in strong near-infrared fluorescence. Single-crystal X-ray diffraction reveals that Au11(4-Mpy)3(PPh3)7 in MSOF-4 transforms into Au11Br3(PPh3)7 upon ligand exchange with 1-BPR, resulting in 1-BPR@MSOF-6 single crystals with a rarely reported helical assembly structure. Significantly, the double-helical structure of MSOF-6 facilitates efficient catalysis of the electron transfer (ET) reaction, resulting in a nearly 6 times increase of catalytic rates compared with MSOF-4. In sharp contrast, solid MSOF-5 possesses chb topology and cage-type channels with narrow windows, showing excellent selective physical adsorption toward 1-BPR vapor but a nonfluorescent feature upon guest adsorption. Our results demonstrate a powerful strategy for developing advanced assemblies with high-order complexity and engineering their functions in atomic precision.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenxing Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zijian Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yu Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| | - Li-Li Tan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| |
Collapse
|
3
|
Ge R, Cai PW, Sun C, Sun YQ, Li XX, Zheng ST. Development of non-closed silver clusters by transition-metal-coordination-cluster substituted polyoxometalate templates. Chem Sci 2024; 15:12543-12549. [PMID: 39118619 PMCID: PMC11304815 DOI: 10.1039/d4sc01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nature seems to favor the formation of closed anion-templated silver clusters. How precisely to create non-closed sliver clusters remains an interesting challenge. In this work, we propose that the use of transition-metal-coordination-cluster substituted polyoxometalates (TMCC-substituted POMs) as templates is an effective synthetic strategy for creating the non-closed silver clusters, as demonstrated by the obtainment of four types of rare non-closed silver cluster species of Ag38-TM (TM = Co, Ni or Zn), Ag37-Zn, {Ag37-Zn}∞ and Ag36-TM (TM = Co, Ni). The idea of the strategy is to employ the TMCC-substituted POMs containing cluster modules with different bond interactions with Ag+ ions as templates to guide the formation of the non-closed silver clusters. For example, TMCC-substituted POM clusters are used as templates in this work, which contain POM modules that can coordinate with the Ag+ ions and TMCC moieties that are difficult to coordinate with the Ag+ ions, leading to the Ag+ ions being unable to form closed clusters around TMCC-substituted POM templates. The work demonstrates a promising approach to developing intriguing and unexplored non-closed silver clusters.
Collapse
Affiliation(s)
- Rui Ge
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Ping-Wei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| |
Collapse
|
4
|
Li S, Liu Y, Tang X, Xu Z, Lin L, Xie Z, Huo R, Nan ZA, Guan ZJ, Shen H, Zheng N. Chiroptical Activity Amplification of Chiral Metal Nanoclusters via Surface/Interface Solidification. ACS NANO 2024; 18:13675-13682. [PMID: 38752561 DOI: 10.1021/acsnano.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
It remains a grand challenge to amplify the chiroptical activity of chiral metal nanoclusters (NCs) although it is desirable for fundamental research and practical application. Herein, we report a strategy of surface/interface solidification (SIS) for enhancing the chiroptical activity of gold NCs. Structural analysis of [Au19(2R,4R/2S,4S-BDPP)6Cl2]3+ (BDPP is 2,4-bis(diphenylphosphino)pentane) clusters reveals that one of the interfacial gold atoms is flexible between two sites and large space is present on the surface, thus hampering chirality transfer from surface chiral ligands to metal core and leading to low chiroptical activity. Following SIS by filling the flexible sites and replacing chlorides with thiolate ligands affords another pair of [Au20(2R,4R/2S,4S-BDPP)6(4-F-C6H4S)2]4+, which shows a more compact and organized structure and thus an almost 40-fold enhancement of chiroptical activity. This work not only provides an efficient approach for amplifying the chiroptical activity of metal nanoclusters but also highlights the significance of achiral components in shaping chiral nanostructures.
Collapse
Affiliation(s)
- Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Ying Liu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xiongkai Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Xu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lushan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhenlang Xie
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rong Huo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Zi-Ang Nan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
5
|
Zhou H, Duan T, Lin Z, Yang T, Deng H, Jin S, Pei Y, Zhu M. Total Structure, Structural Transformation and Catalytic Hydrogenation of [Cu 41 (SC 6 H 3 F 2 ) 15 Cl 3 (P(PhF) 3 ) 6 (H) 25 ] 2- Constructed from Twisted Cu 13 Units. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307085. [PMID: 38064120 PMCID: PMC10870033 DOI: 10.1002/advs.202307085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Indexed: 02/17/2024]
Abstract
Herein, a remarkable achievement in the synthesis and characterization of an atomically precise copper-hydride nanocluster, [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- via a mild one-pot reaction is presented. Through X-ray crystallography analysis, it is revealed that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits a unique shell-core-shell structure. The inner Cu29 kernel is composed of three twisted Cu13 units, connected through Cu4 face sharing. Surrounding the metal core, two Cu6 metal shells, resembling a protective sandwich structure are observed. This arrangement, along with intracluster π···π interactions and intercluster C─H···F─C interactions, contributes to the enhanced stability of [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- . The presence, number, and location of hydrides within the nanocluster are established through a combination of experimental and density functional theory investigations. Notably, the addition of a phosphine ligand triggers a fascinating nanocluster-to-nanocluster transformation in [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- , resulting in the generation of two nanoclusters, [Cu14 (SC6 H3 F2 )3 (PPh3 )8 H10 ]+ and [Cu13 (SC6 H3 F2 )3 (P(PhF)3 )7 H10 ]0 . Furthermore, it is demonstrated that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits catalytic activity in the hydrogenation of nitroarenes. This intriguing nanocluster provides a unique opportunity to explore the assembly of M13 units, similar to other coinage metal nanoclusters, and investigate the nanocluster-to-nanocluster transformation in phosphine and thiol ligand co-protected copper nanoclusters.
Collapse
Affiliation(s)
- Huimin Zhou
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Tengfei Duan
- Department of ChemistryKey Laboratory of Environmentally Friendly Chemistry and Applications of MOEXiangtan UniversityXiangtanHunan411105China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Tao Yang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Huijuan Deng
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Shan Jin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Yong Pei
- Department of ChemistryKey Laboratory of Environmentally Friendly Chemistry and Applications of MOEXiangtan UniversityXiangtanHunan411105China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| |
Collapse
|
6
|
Wang Z, Zhu YJ, Ahlstedt O, Konstantinou K, Akola J, Tung CH, Alkan F, Sun D. Three in One: Three Different Molybdates Trapped in a Thiacalix[4]arene Protected Ag 72 Nanocluster for Structural Transformation and Photothermal Conversion. Angew Chem Int Ed Engl 2024; 63:e202314515. [PMID: 38015420 DOI: 10.1002/anie.202314515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Polyoxometalates (POMs) represent crucial intermediates in the formation of insoluble metal oxides from soluble metal ions, however, the rapid hydrolysis-condensation kinetics of MoVI or WVI makes the direct characterization of coexisted molecular species in a given medium extremely difficult. Silver nanoclusters have shown versatile capacity to encapsulate diverse POMs, which provides an alternative scene to appreciate landscape of POMs in atomic precision. Here, we report a thiacalix[4]arene protected silver nanocluster (Ag72b) that simultaneously encapsulates three kinds of molybdates (MoO4 2- , Mo6 O22 8- and Mo7 O25 8- ) in situ transformed from classic Lindqvist Mo6 O19 2- , providing more deep understanding on the structural diversity and condensation growth route of POMs in solution. Ag72b is the first silver nanocluster trapping so many kinds of molybdates, which in turn exert collective template effect to aggregate silver atoms into a nanocluster. The post-reaction of Ag72b with AgOAc or PhCOOAg produces a discrete Ag24 nanocluster (Ag24a) or an Ag28 nanocluster based 1D chain structure (Ag28a), respectively. Moreover, the post-synthesized Ag28a can be utilized as potential ignition material for further application. This work not only provides an important model for unlocking dynamic features of POMs at atom-precise level but also pioneers a promising approach to synthesize silver nanoclusters from known to unknown.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Yan-Jie Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Olli Ahlstedt
- Computational Physics Laboratory, Tampere University, 33014, Tampere, Finland
| | | | - Jaakko Akola
- Computational Physics Laboratory, Tampere University, 33014, Tampere, Finland
- Department of Physics, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Fahri Alkan
- Department of Chemistry, Bilkent University, Ankara, 06800, Turkey
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
7
|
Nakatani R, Biswas S, Irie T, Sakai J, Hirayama D, Kawawaki T, Niihori Y, Das S, Negishi Y. A new two-dimensional luminescent Ag 12 cluster-assembled material and its catalytic activity for reduction of hexacyanoferrate(III). NANOSCALE 2023; 15:16299-16306. [PMID: 37718910 DOI: 10.1039/d3nr03343k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Silver cluster-assembled materials (SCAMs) have garnered significant interest as promising platforms for different functional explorations. Their atomically precise structures, intriguing chemical/physical properties, and remarkable luminescent capabilities make them highly appealing. However, the properties of these materials are primarily determined by their structural architecture, which is heavily influenced by the linker molecules used in their assembly. The choice of linker molecules plays a pivotal role in shaping the structural characteristics and ultimately determining the unique properties of SCAMs. To this end, the first SCAM with an intriguing (3,6)-connected kgd topology, [Ag12(StBu)6(CF3COO)6(TPBTC)6]n (termed TUS 3), TPBTC = benzene-1,3,5-tricarboxylic acid tris-pyridin-4-ylamide, has been synthesized by reticulating C6-symmetric Ag12 cluster cores with C3-symmetric tripodal pyridine linkers. Due to the structutural architecture of the linker molecule, TUS 3 posseses a luminescent porous framework structure where each two-dimensional (2D) layers are non-covalently linked with each other to form a three dimensional (3D) framework and ultimately offers uniaxial open channels. The compact mesoporous structural architecture not only gives the excellent surface area but also offers impressive stability of this material even in water medium. Taking advantage of these properties, TUS 3 shows brilliant catalytic activity in the reduction of hexacyanoferrate(III) using sodium borohydride in aqueous solutions.
Collapse
Affiliation(s)
- Riki Nakatani
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Daisuke Hirayama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yoshiki Niihori
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Saikat Das
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| |
Collapse
|
8
|
Xie WX, Xue CH, Liu M, Zhou K, Gu HH, Ji JY, Chen BK, Liu N, Bi YF. Thiacalix[4]arene-protected alkynyl Ag n ( n = 9, 18) nanoclusters: syntheses, structural characterizations, photocurrent responses and fluorescence properties. Dalton Trans 2023; 52:13405-13412. [PMID: 37691584 DOI: 10.1039/d3dt02285d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Two thiacalix[4]arene-protected silver(I) alkynyl nanoclusters, [Na2(H2O)2][Ag9(TC4A)(tBuCC)4(CH3OH)2(SbF6)0.5(OH)2.5]·3.5H2O·CH3OH (1, abbreviated as Ag9) and [Ag9(TC4A)(tBuCC)4(CF3COO)]2·4CH3OH (2, abbreviated as Ag18), were synthesized by the reaction of [tBuCCAg]n, p-tert-butylthiacalix[4]arene (H4TC4A), NaBH4, and AgSbF6 or CF3COOAg in the mixed solvent of methanol-trichloromethane-toluene under solvothermal conditions, respectively. Driven by SbF6- and CF3COO- with different coordination properties, the structural unit [Ag9(TC4A)(tBuCC)4]+ in both the compounds migrated in different modes, accompanied by distinct Ag⋯Ag distances. Ag9 and Ag18 exhibit similar UV-Vis absorption and diffuse reflection spectra along with contrary tendency between photocurrent responses and solid-state fluorescence. The solution stability of Ag9 and Ag18 was demonstrated by 1H NMR and MALDI-TOF mass spectrometry. The fluorescence responses of Ag9 and Ag18 towards different organic molecules were also investigated, which indicated that the polarity of solvent has a certain effect on the emission intensities of Ag9 and Ag18. This study provides a positive guide for the controlled synthesis and further study of the structure-activity relationship of thiacalix[4]arene-protected silver alkynyl nanoclusters.
Collapse
Affiliation(s)
- Wen-Xuan Xie
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Chun-Hui Xue
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Meng Liu
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Kun Zhou
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Hui-Hao Gu
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Jiu-Yu Ji
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Bao-Kuan Chen
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Na Liu
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Yan-Feng Bi
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| |
Collapse
|
9
|
Li LJ, Luo YT, Tian YQ, Wang P, Yi XY, Yan J, Pei Y, Liu C. Unveiling the Remarkable Stability and Catalytic Activity of a 6-Electron Superatomic Ag 30 Nanocluster for CO 2 Electroreduction. Inorg Chem 2023; 62:14377-14384. [PMID: 37620296 DOI: 10.1021/acs.inorgchem.3c02083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nanocluster catalysts face a significant challenge in striking the right balance between stability and catalytic activity. Here, we present a thiacalix[4]arene-protected 6-electron [Ag30(TC4A)4(iPrS)8] nanocluster that demonstrates both high stability and catalytic activity. The Ag30 nanocluster features a metallic core, Ag104+, consisting of two Ag3 triangles and one Ag4 square, shielded by four {Ag5@(TC4A)4} staple motifs. Based on DFT calculations, the Ag104+ metallic kernel can be viewed as a trimer comprising 2-electron superatomic units, exhibiting a valence electron structure similar to that of the Be3 molecule. Notably, this is the first crystallographic evidence of the trimerization of 2-electron superatomic units. Ag30 can reduce CO2 into CO with a Faraday efficiency of 93.4% at -0.9 V versus RHE along with excellent long-term stability. Its catalytic activity is far superior to that of the chain-like AgI polymer ∞1{[H2Ag5(TC4A)(iPrS)3]} (∞1Agn), with the composition similar to Ag30. DFT calculations elucidated the catalytic mechanism to clarify the contrasting catalytic performances of the Ag30 and ∞1Agn polymers and disclosed that the intrinsically higher activity of Ag30 may be due to the greater stability of the dual adsorption mode of the *COOH intermediate on the metallic core.
Collapse
Affiliation(s)
- Liang-Jun Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu-Ting Luo
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Yi-Qi Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
10
|
Wang Z, Zhu YJ, Han BL, Li YZ, Tung CH, Sun D. A route to metalloligands consolidated silver nanoclusters by grafting thiacalix[4]arene onto polyoxovanadates. Nat Commun 2023; 14:5295. [PMID: 37652941 PMCID: PMC10471715 DOI: 10.1038/s41467-023-41050-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Metalloligands provide a potent strategy for manipulating the surface metal arrangements of metal nanoclusters, but their synthesis and subsequent installation onto metal nanoclusters remains a significant challenge. Herein, two atomically precise silver nanoclusters {Ag14[(TC4A)6(V9O16)](CyS)3} (Ag14) and {Ag43S[(TC4A)2(V4O9)]3(CyS)9(PhCOO)3Cl3(SO4)4(DMF)3·6DMF} (Ag43) are synthesized by controlling reaction temperature (H4TC4A = p-tert-butylthiacalix[4]arene). Interestingly, the 3D scaffold-like [(TC4A)6(V9O16)]11- metalloligand in Ag14 and 1D arcuate [(TC4A)2(V4O9)]6- metalloligand in Ag43 exhibit a dual role that is the internal polyoxovanadates as anion template and the surface TC4A4- as the passivating agent. Furthermore, the thermal-induced structure transformation between Ag14 and Ag43 is achieved based on the temperature-dependent assembly process. Ag14 shows superior photothermal conversion performance than Ag43 in solid state indicating its potential for remote laser ignition. Here, we show the potential of two thiacalix[4]arene modified polyoxovanadates metalloligands in the assembly of metal nanoclusters and provide a cornerstone for the remote laser ignition applications of silver nanoclusters.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Yan-Jie Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Yi-Zhi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| |
Collapse
|
11
|
Wang M, Li S, Chen H, Sun X, Sun J, Jia Y, Guo S, Sun C, Shen H. DppfCuBH 4: new reducing agents for the synthesis of ferrocene-functionalized metal nanoclusters. Dalton Trans 2023. [PMID: 37449919 DOI: 10.1039/d3dt01461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A facile synthesis of atomically precise metal nanoclusters, especially those decorated with functional groups, is the prerequisite for finding applications in special fields and studying structure-and-property relationships. The exploration of simple and efficient synthetic prototypes for introducing functional ligands (such as ferrocene) into cluster moieties is thus of high interest. In this work, a type of reducing agent of dppfCuBH4 (dppf is 1,1'-bis(diphenyphosphino)ferrocene) is introduced for the first time to prepare ferrocene-functionalized metal nanoclusters. Two new clusters of [Ag25Cu4(dppf)6(3-F-PhCC)12Cl6]3+ (1) and [Ag4(dppf)5Cl2]2+ (2) have been obtained from the simple synthetic method. The two compounds have been fully characterized by advanced techniques of electrospray ionization mass spectroscopy (ESI-MS), nuclear magnetic resonance (NMR), and ultraviolet-visible spectroscopy (UV-Vis). The total structure of the clusters, as determined by X-ray single-crystal diffraction, describes the Ag13@Ag12Cu4(dppf)6(3-F-PhCC)12Cl6 core-shell structure of 1 and [Ag2Cl(dppf)2]+-dppf-[Ag2Cl(dppf)2]+ polymeric structure of 2. This work opens the door to employing dppfCuBH4 as a functional reducing agent to discover many underlying metal nanoclusters and even other nanomaterials which feature ferrocene-groups.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Huijun Chen
- College of Food Science and Pharmaceutical Engineering, Wuzhou University, Guangxi, 543000, China
| | - Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Cunfa Sun
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
12
|
Mu WL, Wu L, Yu WD, Yi XY, Yan J, Liu C. Atomically accurate structural tailoring of thiacalix[4]arene-protected copper(II)-based metallamacrocycles. Dalton Trans 2023; 52:5438-5442. [PMID: 37083046 DOI: 10.1039/d3dt00455d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Accurate manipulation of ligands at specific sites in robust clusters is attractive but difficult, especially for those ligands that coordinate in intricate binding patterns. By linking the shuttlecock-like {Cu4(μ4-Cl)TC4A} motif and the phenylphosphate (PhPO32-) ligand, we elaborately design and synthesize two Cu(II)-thiacalix[4]arene metallamacrocycles (MMCs), namely Cu12L3 and Cu16L4, which have regular triangular and quadrilateral topologies, respectively. While keeping the core intact, the Cl- and PhPO32- in those two MMCs, which coordinated in a μ4-bridging fashion, can be accurately substituted with salicylate ligands. Theoretical calculations have been carried out to reveal the effect of ligand tailoring on the electronic structure of clusters. Structural regulation can affect the catalytic activity of these clusters, which has been verified by using the clusters as catalysts for selective sulfide oxidation.
Collapse
Affiliation(s)
- Wen-Lei Mu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Linlin Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Wei-Dong Yu
- China College of Science, Hunan University of Technology and Business, Changsha 410000, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
13
|
Sun J, Tang X, Tang J, Zhang Y, Li Z, Chaolumen, Guo S, Shen H. Simple Approach toward N-Heterocyclic Carbene-Protected Gold Nanoclusters. Inorg Chem 2023; 62:5088-5094. [PMID: 36947487 DOI: 10.1021/acs.inorgchem.2c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Little advance has been made toward developing alternative bottom-up synthetic strategies for N-heterocyclic carbene (NHC)-stabilized gold nanoclusters, although this unique class of nanomaterials has exhibited exciting properties. We report in this work a simple and straightforward approach toward NHC-ligated gold nanoclusters by using imidazolium salts rather than free carbenes or NHC-coordinated gold complexes (NHC-Au-X, X is counterions) as precursors. Illustrated here is a one-pot and one-step preparation of an NHC-stabilized Au13Br4 cluster that features a distinct molecular formula, surface motifs, and assembling modes via chemical reduction of dpaAu, NaOMe, and FNHCBn·HBr by NaBH4 (Hdpa is dipyridylamine; FNHCBn·HBr is 1,3-dibenzyl-5,6-difluoro-1H-benzo[d]imidazole-3-ium bromide). In situ UV-vis and NMR studies have elucidated the base-assisted formation of NHCs from imidazolium salts for the protection of the metal core. This work not only reports a new NHC-ligated superatom that completes the Au13 library, thus facilitating structure-property studies, but also opens the door to explore underlying analogues in a facile and reasonable way.
Collapse
Affiliation(s)
- Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xiongkai Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiaqi Tang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yuhao Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zilin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Chaolumen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuo Guo
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
14
|
Sun X, Tang X, Gao YL, Zhao Y, Wu Q, Cao D, Shen H. An atomically precise Ag 18Cu 8 nanocluster with rich alkynyl-metal coordination structures and unique SbF 6- assembling modes. NANOSCALE 2023; 15:2316-2322. [PMID: 36636988 DOI: 10.1039/d2nr05814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Elucidating the coordination structures and assembling modes of atomically precise metal nanoclusters (NCs) remains a hot topic as it gives answers to the underlying mechanism of nanomaterials and bulk materials in terms of structure-property relationships. Here we report a novel silver-copper alloy NC featuring rich alkynyl-metal coordination modes and unique SbF6- assembling structures. The NC, with the composition of [Ag18Cu8(dppp)4(tBu-C6H4CC)22](SbF6)4 (dppp = 1,3-bis(diphenylphosphino)-propane), was prepared by a stepwise synthetic approach. Single-crystal X-ray diffraction analysis revealed that such a NC featured a staircase-like Ag18Cu8 kernel, which was protected by hybrid alkynyl and dppp ligands in diverse coordination structures and multiple environments. The structural analysis also revealed the unique function of SbF6- in inducing the assembly of cluster moieties, highlighting the importance of counterions in assembling nanomolecules. The diverse coordination structures of the protective ligands with metal ions and the indispensable roles of counterions in assembling the cluster moieties have also been supported by nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) studies, making it a model system to showcase the uniqueness of atomically precise metal NCs in illustrating the coordination chemistry of nanomaterials and bulk materials at the molecular level.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiongkai Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan-Li Gao
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Yujuan Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Qingyuan Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxu Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
15
|
Gupta RK, Li L, Wang Z, Han BL, Feng L, Gao ZY, Tung CH, Sun D. Regulating the assembly and expansion of the silver cluster from the Ag 37 to Ag 46 nanowheel driven by heteroanions. Chem Sci 2023; 14:1138-1144. [PMID: 36756341 PMCID: PMC9891368 DOI: 10.1039/d2sc06436g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022] Open
Abstract
Precise control over the shape and size of metal nanoclusters through anion template-driven self-assembly is one of the key scientific goals in the nanocluster community, however, it is still not understood comprehensively. In this work, we report the controllable synthesis and atomically precise structures of silver nanowheels Ag37 and Ag46, using homo (Cl- ions) and heteroanion (Cl- and CrO4 2- ions) template strategies, along with macrocyclic p-phenyl-thiacalix[4]arene and small iPrS- ligands. Structural analyses revealed that in Ag37, Cl- ions serve as both local and global templates, whereas CrO4 2- ions function as local and Cl- ions as global templates in Ag46, resulting in a pentagonal nanowheel (Ag37) and a hexagonal (Ag46) nanowheel. The larger ionic size and more negative charges of CrO4 2- ions than Cl- ions offer more coordination sites for the silver atoms and are believed to be the key factors that drive the nanowheel core to expand significantly. Also, by taking advantage of the deep cavity of thiacalix[4]arene with an extended phenyl group, Ag46 has been used as a host material for dye adsorption depending on the charge and size of organic dyes. The successful use of heteroanions to control the expansion of well-defined silver nanowheels fills the knowledge gap in understanding the directing role of heteroanions in dictating the shape and size of nanoclusters at the atomic level.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Li Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Bao-Liang Han
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal UniversityXinxiang453007China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| |
Collapse
|
16
|
Li SQ, Dai LF, Tian YQ, Yi YX, Yan J, Liu C. Polymolybdate-guided assembly of a thiacalix[4]arene-protected Ag nanocluster for electrocatalytic CO 2 reduction. Chem Commun (Camb) 2023; 59:575-578. [PMID: 36515143 DOI: 10.1039/d2cc05692e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A large polymolybdate-templated {Ag49Mo16} cluster protected by six thiacalix[4]arene (TC4A) molecules was synthesized by a one-pot solvothermal reaction. Structural analysis shows that the {Ag49Mo16} is assembled by inserting a [Mo6O22]8- cluster into a [Ag49Mo10@(TC4A)6] cage, representing the first polyoxometalate-templated Ag cluster protected by calixarene macrocyclic ligands. The solution stability and photoelectric properties of {Ag49Mo16} are discussed. Furthermore, this POM-templated Ag nanocluster realized electrocatalytic CO2 reduction applications, and 44.75% CO faradaic efficiency (FE) was obtained at a voltage of -0.8 V (vs. RHE).
Collapse
Affiliation(s)
- Shang-Qian Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, P. R. China.
| | - Lin-Fang Dai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, P. R. China.
| | - Yi-Qi Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, P. R. China.
| | - Yi-Xiao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, P. R. China.
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, P. R. China.
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, P. R. China.
| |
Collapse
|
17
|
Li H, Wang P, Zhu C, Zhang W, Zhou M, Zhang S, Zhang C, Yun Y, Kang X, Pei Y, Zhu M. Triple-Helical Self-Assembly of Atomically Precise Nanoclusters. J Am Chem Soc 2022; 144:23205-23213. [DOI: 10.1021/jacs.2c11341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, P. R. China
| | - Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - San Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yapei Yun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
18
|
Abstract
Three types of oxocarbon anions as templates were used to synthesize high-nuclear silver clusters, [Ag16(C2O4){S2P(OEt)2}12]2(PF6)4 (1), [Ag16(C4O4){S2P(OEt)2}12]2(PF6)4 (2), and [Ag32(S)2(C5O5)2{S2P(OEt)2}22](PF6)2 (3), and characterized by multi-NMR spectroscopy and X-ray crystallography. As the template size increases, the shape and size of the clusters change accordingly. The template effect in high-nuclear silver clusters has been investigated in this work.
Collapse
Affiliation(s)
- Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan (Republic of China)
| | - Hao Chen
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan (Republic of China)
| | - Hong-Jhih You
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan (Republic of China)
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan (Republic of China)
| |
Collapse
|
19
|
Tang L, Yin Z, Wang R, Wang B, Jiang K, Ding M, Wang S. Understanding a ligand's effects on intra-cluster and inter-cluster assembly. NANOSCALE 2022; 14:8842-8848. [PMID: 35695330 DOI: 10.1039/d2nr01765b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ligands play an essential role in cluster assembly; however, understanding this behavior at the atomic level is far off. In this work, Cd12Ag32(S-PhOMe)36(PPh)4@Cd6Ag2(S-PhOMe)6Cl6(PPh3)8@Ag6(S-PhOMe)6Cl2 (Abbrev. Cd12Ag32-1) and Cd12Ag32(S-c-C6H11)36 (Abbrev. Cd12Ag32-2) were synthesized and structurally determined by single-crystal X-ray diffraction. An important finding is the selective adsorption of phosphine ligands that is caused by the different types of thiol ligands. In addition, Cd12Ag32-1 follows a unique stacking pattern in a superlattice with multiple inter-cluster channels. Overall, this study is helpful for an in-depth understanding of the effect of mixed ligands on nanocluster formation and the correlation between structure and properties in the nanocluster range.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Zhengmao Yin
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ru Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Kefan Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Mei Ding
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
20
|
Xia Y, Xia XY, Fang JJ, Liu Z, Xie YP, Lu X. Anion-templated silver thiolated clusters effected by carboxylate ligands. Dalton Trans 2022; 51:14557-14562. [DOI: 10.1039/d2dt02194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under the guidance of anion templates V10O286- and SO42-, the novelty of assembly can be increased by using different carboxylate ligands. Herein, the synthesis, crystal structure and electrochemical properties of...
Collapse
|