1
|
Deuker D, Asilonu E, Bracewell DG, Frank S. Adeno-Associated Virus 5 Protein Particles Produced by E. coli Cell-Free Protein Synthesis. ACS Synth Biol 2024; 13:2710-2717. [PMID: 39178386 PMCID: PMC11421080 DOI: 10.1021/acssynbio.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as important tools for gene therapy and, more recently, vaccine development. Nonetheless, manufacturing can be costly and time-consuming, emphasizing the importance of alternative production platforms. We investigate the potential of E. coli-based cell-free protein synthesis (CFPS) to produce recombinant AAV5 virus-like particles (VLPs). AAV5 virus protein 3 (VP3) constructs, both with and without Strep-tag II, were expressed with CFPS. Lower reaction temperatures resulted in increased solubility, with the untagged variant containing nearly 90% more soluble VLP VP3 protein at 18 °C than at 37 °C. Affinity chromatography of N-terminally Strep(II)-tagged VP3 enabled successful isolation with minimal processing. DLS and TEM confirmed the presence of ∼20 nm particles. Furthermore, the N-terminally tagged AAV5 VP3 VLPs were biologically active, successfully internalizing into HeLa cells. This study describes an innovative approach to AAV VLP production using E. coli-based CFPS, demonstrating its potential for rapid and biologically active AAV VLP synthesis.
Collapse
Affiliation(s)
- Danielle Deuker
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ernest Asilonu
- Cytiva Europe Limited, 5 Harbourgate Business Park, Southampton Road, Portsmouth, Hampshire PO6 4BQ, United Kingdom
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
2
|
Hewagama ND, Uchida M, Wang Y, Kraj P, Lee B, Douglas T. Higher-Order VLP-Based Protein Macromolecular Framework Structures Assembled via Coiled-Coil Interactions. Biomacromolecules 2023; 24:3716-3728. [PMID: 37467146 DOI: 10.1021/acs.biomac.3c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Hierarchical organization is one of the fundamental features observed in biological systems that allows for efficient and effective functioning. Virus-like particles (VLPs) are elegant examples of a hierarchically organized supramolecular structure, where many subunits are self-assembled to generate the functional cage-like architecture. Utilizing VLPs as building blocks to construct two- and three-dimensional (3D) higher-order structures is an emerging research area in developing functional biomimetic materials. VLPs derived from P22 bacteriophages can be repurposed as nanoreactors by encapsulating enzymes and modular units to build higher-order catalytic materials via several techniques. In this study, we have used coiled-coil peptide interactions to mediate the P22 interparticle assembly into a highly stable, amorphous protein macromolecular framework (PMF) material, where the assembly does not depend on the VLP morphology, a limitation observed in previously reported P22 PMF assemblies. Many encapsulated enzymes lose their optimum functionalities under the harsh conditions that are required for the P22 VLP morphology transitions. Therefore, the coiled-coil-based PMF provides a fitting and versatile platform for constructing functional higher-order catalytic materials compatible with sensitive enzymes. We have characterized the material properties of the PMF and utilized the disordered PMF to construct a biocatalytic 3D material performing single- and multistep catalysis.
Collapse
Affiliation(s)
- Nathasha D Hewagama
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, California 93740, United States
| | - Yang Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Pawel Kraj
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Kikuchi K, Date K, Ueno T. Design of a Hierarchical Assembly at a Solid-Liquid Interface Using an Asymmetric Protein Needle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2389-2397. [PMID: 36734675 DOI: 10.1021/acs.langmuir.2c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Design and control of processes for a hierarchical assembly of proteins remain challenging because it requires consideration of design principles with atomic-level accuracy. Previous studies have adopted symmetry-based strategies to minimize the complexity of protein-protein interactions and this has placed constraints on the structures of the resulting protein assemblies. In the present work, we used an anisotropic-shaped protein needle, gene product 5 (gp5) from bacteriophage T4 with a C-terminal hexahistidine-tag (His-tag) (gp5_CHis), to construct a hierarchical assembly with two distinct protein-protein interaction sites. High-speed atomic force microscopy (HS-AFM) measurements reveal that it forms unique tetrameric clusters through its N-terminal head on a mica surface. The clusters further self-assemble into a monolayer through the C-terminal His-tag. The HS-AFM images and displacement analyses show that the monolayer is a network-like structure rather than a crystalline lattice. Our results expand the toolbox for constructing hierarchical protein assemblies based on structural anisotropy.
Collapse
Affiliation(s)
- Kosuke Kikuchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-55, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Koki Date
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-55, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-55, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
4
|
Cerofolini L, Ramberg KO, Padilla LC, Antonik P, Ravera E, Luchinat C, Fragai M, Crowley PB. Solid-state NMR - a complementary technique for protein framework characterization. Chem Commun (Camb) 2023; 59:776-779. [PMID: 36546612 DOI: 10.1039/d2cc05725e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein frameworks are an emerging class of biomaterial with medical and technological applications. Frameworks are studied mainly by X-ray diffraction or scattering techniques. Complementary strategies are required. Here, we report solid-state NMR analyses of a microcrystalline protein-macrocycle framework and the rehydrated freeze-dried protein. This methodology may aid the characterization of low-crystallinity frameworks.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Kiefer O Ramberg
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland.
| | - Luis C Padilla
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Paweł Antonik
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland.
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Peter B Crowley
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
5
|
Sun F, Brunk NE, Jadhao V. Shape control of deformable charge-patterned nanoparticles. Phys Rev E 2023; 107:014502. [PMID: 36797885 DOI: 10.1103/physreve.107.014502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Deformable nanoparticles (NPs) offer unprecedented opportunities as dynamic building blocks that can spontaneously reconfigure during assembly in response to environmental cues. Designing reconfigurable materials based on deformable NPs hinges on an understanding of the shapes that can be engineered in these NPs. We solve for the low-energy shapes of charge-patterned deformable NPs by using molecular dynamics-based simulated annealing to minimize a coarse-grained model Hamiltonian characterized with NP elastic and electrostatic energies subject to a volume constraint. We show that deformable spherical NPs of radius 50 nm whose surface is tailored with octahedrally distributed charged patches and double-cap charged patches adapt their shape differently in response to changes in surface charge coverage and ionic strength. We find shape transitions to rounded octahedra, faceted octahedra, faceted bowls, oblate spheroids, spherocylinders, dented beans, and dimpled rounded bowls. We demonstrate that similar shape transitions can be achieved in deformable NPs of different sizes. The effects of counterion condensation on the free-energetic drive associated with the observed deformations are examined via Manning model calculations that utilize simulation-derived estimates for the NP Coulomb energy under salt-free conditions. The charge-pattern-based shape control of deformable NPs has implications for the design of responsive nanocontainers and for assembling reconfigurable materials whose functionality hinges on the shape-shifting properties of their nanoscale building blocks.
Collapse
Affiliation(s)
- Fanbo Sun
- Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408, USA
| | - Nicholas E Brunk
- Wolfram Research, Champaign, Illinois 61820, USA
- American Regent, Norristown, Pennsylvania 19403, USA
| | - Vikram Jadhao
- Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408, USA
| |
Collapse
|
6
|
Wang Y, Douglas T. Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Materials. Acc Chem Res 2022; 55:1349-1359. [PMID: 35507643 DOI: 10.1021/acs.accounts.2c00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ConspectusWhen viewed through the lens of materials science, nature provides a vast library of hierarchically organized structures that serve as inspiration and raw materials for new synthetic materials. The structural organization of complex bioarchitectures with advanced functions arises from the association of building blocks and is strongly supported by ubiquitous mechanisms of self-assembly, where interactions among components result in spontaneous assembly into defined structures. Viruses are exemplary, where a capsid structure, often formed from the self-assembly of many individual protein subunits, serves as a vehicle for the transport and protection of the viral genome. Higher-order assemblies of viral particles are also found in nature with unexpected collective behaviors. When the infectious aspect of viruses is removed, the self-assembly of viral particles and their potential for hierarchical assembly become an inspiration for the design and construction of a new class of functional materials at a range of different length scales.Salmonella typhimurium bacteriophage P22 is a well-studied model for understanding viral self-assembly and the construction of virus-like particle (VLP)-based materials. The formation of cage-like P22 VLP structures results from scaffold protein (SP)-directed self-assembly of coat protein (CP) subunits into icosahedral capsids with encapsulation of SP inside the capsid. Employing the CP-SP interaction during self-assembly, the encapsulation of guest protein cargos inside P22 VLPs can be achieved with control over the composition and the number of guest cargos. The morphology of cargo-loaded VLPs can be altered, along with changes in both the physical properties of the capsid and the cargo-capsid interactions, by mimicking aspects of the infectious P22 viral maturation. The structure of the capsid differentiates the inside cavity from the outside environment and serves as a protecting layer for the encapsulated cargos. Pores in the capsid shell regulate molecular exchange between inside and outside, where small molecules can traverse the capsid freely while the diffusion of larger molecules is limited by the pores. The interior cavity of the P22 capsid can be packed with hundreds of copies of cargo proteins (especially enzymes), enforcing intermolecular proximity, making this an ideal model system in which to study enzymatic catalysis in crowded and confined environments. These aspects highlight the development of functional nanomaterials from individual P22 VLPs, through biomimetic design and self-assembly, resulting in fabrication of nanoreactors with controlled catalytic behaviors.Individual P22 VLPs have been used as building blocks for the self-assembly of higher-order structures. This relies on a balance between the intrinsic interparticle repulsion and a tunable interparticle attraction. The ordering of VLPs within three-dimensional assemblies is dependent on the balance between repulsive and attractive interactions: too strong an attraction results in kinetically trapped disordered structures, while decreasing the attraction can lead to more ordered arrays. These higher-order assemblies display collective behavior of high charge density beyond those of the individual VLPs.The development of synthetic nanomaterials based on P22 VLPs demonstrates how the potential for hierarchical self-assembly can be applied to other self-assembling capsid structures across multiple length scales toward future bioinspired functional materials.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|