1
|
Bondaz L, Ronghe A, Li S, Čerņevičs K, Hao J, Yazyev OV, Ayappa KG, Agrawal KV. Selective Photonic Gasification of Strained Oxygen Clusters on Graphene for Tuning Pore Size in the Å Regime. JACS AU 2023; 3:2844-2854. [PMID: 37885574 PMCID: PMC10598578 DOI: 10.1021/jacsau.3c00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Controlling the size of single-digit pores, such as those in graphene, with an Å resolution has been challenging due to the limited understanding of pore evolution at the atomic scale. The controlled oxidation of graphene has led to Å-scale pores; however, obtaining a fine control over pore evolution from the pore precursor (i.e., the oxygen cluster) is very attractive. Herein, we introduce a novel "control knob" for gasifying clusters to form pores. We show that the cluster evolves into a core/shell structure composed of an epoxy group surrounding an ether core in a bid to reduce the lattice strain at the cluster core. We then selectively gasified the strained core by exposing it to 3.2 eV of light at room temperature. This allowed for pore formation with improved control compared to thermal gasification. This is because, for the latter, cluster-cluster coalescence via thermally promoted epoxy diffusion cannot be ruled out. Using the oxidation temperature as a control knob, we were able to systematically increase the pore density while maintaining a narrow size distribution. This allowed us to increase H2 permeance as well as H2 selectivity. We further show that these pores could differentiate CH4 from N2, which is considered to be a challenging separation. Dedicated molecular dynamics simulations and potential of mean force calculations revealed that the free energy barrier for CH4 translocation through the pores was lower than that for N2. Overall, this study will inspire research on the controlled manipulation of clusters for improved precision in incorporating Å-scale pores in graphene.
Collapse
Affiliation(s)
- Luc Bondaz
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Anshaj Ronghe
- Department
of Chemical Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Shaoxian Li
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | | | - Jian Hao
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Oleg V. Yazyev
- Institute
of Physics, EPFL, Lausanne CH-1015, Switzerland
| | - K. Ganapathy Ayappa
- Department
of Chemical Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Kumar Varoon Agrawal
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| |
Collapse
|
2
|
Zhang G, Bui V, Yin Y, Tsai EHR, Nam CY, Lin H. Carbon Capture Membranes Based on Amorphous Polyether Nanofilms Enabled by Thickness Confinement and Interfacial Engineering. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37440697 DOI: 10.1021/acsami.3c07046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Thin-film composite membranes are a leading technology for post-combustion carbon capture, and the key challenge is to fabricate defect-free selective nanofilms as thin as possible (100 nm or below) with superior CO2/N2 separation performance. Herein, we developed high-performance membranes based on an unusual choice of semi-crystalline blends of amorphous poly(ethylene oxide) (aPEO) and 18-crown-6 (C6) using two nanoengineering strategies. First, the crystallinity of the nanofilms decreases with decreasing thickness and completely disappears at 500 nm or below because of the thickness confinement. Second, polydimethylsiloxane is chosen as the gutter layer between the porous support and selective layer, and its surface is modified with bio-adhesive polydopamine (<10 nm) with an affinity toward aPEO, enabling the formation of the thin, defect-free, amorphous aPEO/C6 layer. For example, a 110 nm film containing 40 mass % C6 in aPEO exhibits CO2 permeability of 900 Barrer (much higher than a thick film with 420 Barrer), rendering a membrane with a CO2 permeance of 2200 GPU and CO2/N2 selectivity of 27 at 35 °C, surpassing Robeson's upper bound. This work shows that engineering at the nanoscale plays an important role in designing high-performance membranes for practical separations.
Collapse
Affiliation(s)
- Gengyi Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| | - Vinh Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| | - Yifan Yin
- Department of Material Science and Chemical Engineering, Stony Brook University, The State University at New York, Stony Brook, New York 11794, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chang-Yong Nam
- Department of Material Science and Chemical Engineering, Stony Brook University, The State University at New York, Stony Brook, New York 11794, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| |
Collapse
|
3
|
Borcănescu S, Popa A, Verdeș O, Suba M. Functionalized Ordered Mesoporous MCM-48 Silica: Synthesis, Characterization and Adsorbent for CO 2 Capture. Int J Mol Sci 2023; 24:10345. [PMID: 37373501 DOI: 10.3390/ijms241210345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The ordered mesoporous silica MCM-48 with cubic Ia3d structure was synthesized using the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) as a template agent and tetraethylorthosilicate (TEOS) as a silica source. The obtained material was first functionalized with (3-glycidyloxypropyl)trimethoxysilane (KH560); further, two types of amination reagents were used: ethylene diamine (N2) and diethylene triamine (N3). The modified amino-functionalized materials were characterized by powder X-ray diffraction (XRD) at low angles, infrared spectroscopy (FT-IR) and nitrogen adsorption-desorption experiments at 77 K. Characterization from a structural point of view reveals that the ordered MCM-48 mesoporous silica has a highly ordered structure and a large surface area (1466.059 m2/g) and pore volume (0.802 cm3/g). The amino-functionalized MCM-48 molecular sieves were tested for CO2 adsorption-desorption properties at different temperatures using thermal program desorption (TPD). Promising results for CO2 adsorption capacities were achieved for MCM-48 sil KH560-N3 at 30 °C. At 30 °C, the MCM-48 sil KH560-N3 sample has an adsorption capacity of 3.17 mmol CO2/g SiO2, and an efficiency of amino groups of 0.58 mmol CO2/mmolNH2. After nine adsorption-desorption cycles, the results suggest that the performance of the MCM-48 sil KH N2 and MCM-48 sil KH N3 adsorbents is relatively stable, presenting a low decrease in the adsorption capacity. The results reported in this paper for the investigated amino-functionalized molecular sieves as absorbents for CO2 can be considered as promising.
Collapse
Affiliation(s)
- Silvana Borcănescu
- "Coriolan Drăgulescu" Institute of Chemistry, Bl. Mihai Viteazul No. 24, 300223 Timisoara, Romania
| | - Alexandru Popa
- "Coriolan Drăgulescu" Institute of Chemistry, Bl. Mihai Viteazul No. 24, 300223 Timisoara, Romania
| | - Orsina Verdeș
- "Coriolan Drăgulescu" Institute of Chemistry, Bl. Mihai Viteazul No. 24, 300223 Timisoara, Romania
| | - Mariana Suba
- "Coriolan Drăgulescu" Institute of Chemistry, Bl. Mihai Viteazul No. 24, 300223 Timisoara, Romania
| |
Collapse
|
4
|
Zeng S, Wang T, Zhang Y, Elmegreen BG, Luan B, Gu Z. Highly Efficient CO 2/C 2H 2 Separation by Porous Graphene via Quadrupole Gating Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37320857 DOI: 10.1021/acs.langmuir.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Acetylene (C2H2) is an important and widely used raw material in various industries (such as petrochemical). Generally, a product yield is proportional to the purity of C2H2; however, C2H2 from a typical industrial gas-production process is commonly contaminated by CO2. So far, the achievement of high-purity C2H2 separated from a CO2/C2H2 mixture is still challenging due to their very close molecular dimensions and boiling temperatures. Taking advantage of their quadrupoles with opposite signs, here, we show that the graphene membrane embedded with crown ether nanopores can achieve an unprecedented separation efficiency of CO2/C2H2. Combining the molecular dynamics simulation and the density functional theory (DFT) approaches, we discovered that the electrostatic gas-pore interaction favorably allows the fast transport of CO2 through crown ether nanopores while completely prohibiting C2H2 transport, which yields a remarkable permeation selectivity. In particular, the utilized crown ether pore is capable of allowing the individual transport of CO2 while completely rejecting the passage of C2H2, independent of the applied pressures, fed gases ratios, and exerted temperatures, featuring the superiority and robustness of the crown pore in CO2/C2H2 separation. Further, DFT and PMF calculations demonstrate that the transport of CO2 through the crown pore is energetically more favorable than the transport of C2H2. Our findings reveal the potential application of graphene crown pore for CO2 separation with outstanding performance.
Collapse
Affiliation(s)
- Shuming Zeng
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tian Wang
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bruce G Elmegreen
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
5
|
Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|