1
|
Li G, Li J, Wang K, Zhang J, Liao K, Zhang H. V-Doped CoSe 2 Nanowire Catalysts in a 3D-Structured Electrode for Durable Li-S Pouch Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35123-35133. [PMID: 38923884 DOI: 10.1021/acsami.4c05577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lithium-sulfur (Li-S) batteries have high theoretical energy density and are regarded as a promising candidate for next-generation energy storage systems. However, their practical applications are hindered by the slow kinetics of sulfur conversion and polysulfide shuttling. In particular, large-scale pouch cells show much poor cyclability. Here, we develop a high-efficiency catalyst of V-doped CoSe2 by studying the binary CoSe2-VSe2 system and confirming its effectiveness in accelerating polysulfide conversion. The coin cell tests reveal an initial capacity of 1414 mAh g-1 at 0.1 C and 1049 mAh g-1 at 1 C and demonstrate 1000 times cyclability with a decaying rate of 0.05% per cycle. Furthermore, the assembly and construction of pouch cells were optimized with monolithic three-dimensional (3D) electrodes and a multistacking strategy. Specifically, a 3D metallic scaffold (3MS) was developed to host V-doped CoSe2 nanowires and sulfur. In addition, Janus microspheres of C@TiO2 were synthesized to capture polar polysulfides with their polar part of TiO2 and adsorb nonpolar sulfur with their nonpolar part of carbon. By integrating with 3MS, C@TiO2 microspheres can block all ion channels of 3MS and only allow Li ions in and out. These integral designs and monolithic structures enable multistacking pouch cells with high cyclability. A high-loading pouch cell was demonstrated with a total capacity of 700 mAh. The cell can be cycled for 70 times with a capacity retention of 65.7%. In brief, this work provides an integral strategy of catalyst design and overall 3D assembly for practical Li-S batteries in a large pouch cell format.
Collapse
Affiliation(s)
- Guangyue Li
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiatong Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Kui Wang
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
- Chengdu Institute of Advanced Metal Materials Industrial Technology Co., Ltd., Chengdu 610399, China
| | - Jianbo Zhang
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
- Chengdu Institute of Advanced Metal Materials Industrial Technology Co., Ltd., Chengdu 610399, China
| | - Kaiming Liao
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Huigang Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
2
|
Zhang H, Zhang M, Liu R, He T, Xiang L, Wu X, Piao Z, Jia Y, Zhang C, Li H, Xu F, Zhou G, Mai Y. Fe 3O 4-doped mesoporous carbon cathode with a plumber's nightmare structure for high-performance Li-S batteries. Nat Commun 2024; 15:5451. [PMID: 38937487 PMCID: PMC11211388 DOI: 10.1038/s41467-024-49826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Shuttling of lithium polysulfides and slow redox kinetics seriously limit the rate and cycling performance of lithium-sulfur batteries. In this study, Fe3O4-dopped carbon cubosomes with a plumber's nightmare structure (SP-Fe3O4-C) are prepared as sulfur hosts to construct cathodes with high rate capability and long cycling life for Li-S batteries. Their three-dimensional continuous mesochannels and carbon frameworks, along with the uniformly distributed Fe3O4 particles, enable smooth mass/electron transport, strong polysulfides capture capability, and fast catalytic conversion of the sulfur species. Impressively, the SP-Fe3O4-C cathode exhibits top-level comprehensive performance, with high specific capacity (1303.4 mAh g-1 at 0.2 C), high rate capability (691.8 mAh gFe3O41 at 5 C), and long cycling life (over 1200 cycles). This study demonstrates a unique structure for high-performance Li-S batteries and opens a distinctive avenue for developing multifunctional electrode materials for next-generation energy storage devices.
Collapse
Affiliation(s)
- Han Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ruiyi Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tengfeng He
- Shanghai Aerospace Equipments Manufacturer Co., Ltd., 100 Huaning Road, Shanghai, 200245, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yeyang Jia
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chongyin Zhang
- Shanghai Aerospace Equipments Manufacturer Co., Ltd., 100 Huaning Road, Shanghai, 200245, China
| | - Hong Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
3
|
Zhu Z, Wu D, Feng L, He X, Hu T, Ye A, Fu X, Yang W, Wang Y. Architecting the Microenvironment Skeleton of Active Materials in High-Capacity Electrodes by Self-Assembled Nano-Building Blocks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307086. [PMID: 38155510 DOI: 10.1002/smll.202307086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Indexed: 12/30/2023]
Abstract
In analogy to the cell microenvironment in biology, understanding and controlling the active-material microenvironment (ME@AM) microstructures in battery electrodes is essential to the successes of energy storage devices. However, this is extremely difficult for especially high-capacity active materials (AMs) like sulfur, due to the poor controlling on the electrode microstructures. To conquer this challenge, here, a semi-dry strategy based on self-assembled nano-building blocks is reported to construct nest-like robust ME@AM skeleton in a solvent-and-stress-less way. To do that, poly(vinylidene difluoride) nanoparticle binder is coated onto carbon-nanofibers (NB@CNF) via the nanostorm technology developed in the lab, to form self-assembled nano-building blocks in the dry slurry. After compressed into an electrode prototype, the self-assembled dry-slurry is then bonded by in-situ nanobinder solvation. With this strategy, mechanically strong thick sulfur electrodes are successfully fabricated without cracking and exhibit high capacity and good C-rate performance even at a high AM loading (25.0 mg cm-2 by 90 wt% in the whole electrode). This study may not only bring a promising solution to dry manufacturing of batteries, but also uncover the ME@AM structuring mechanism with nano-binder for guiding the design and control on electrode microstructures.
Collapse
Affiliation(s)
- Zhiwei Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Dichen Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Lanxiang Feng
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610225, China
| | - Xuewei He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ting Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ang Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuewei Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
4
|
Li XT, Zhao Y, Zhu YH, Wang WP, Zhang Y, Wang F, Guo YG, Xin S, Bai C. The electrochemistry of stable sulfur isotopes versus lithium. Proc Natl Acad Sci U S A 2024; 121:e2316564121. [PMID: 38527200 PMCID: PMC10998575 DOI: 10.1073/pnas.2316564121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Sulfur in nature consists of two abundant stable isotopes, with two more neutrons in the heavy one (34S) than in the light one (32S). The two isotopes show similar physicochemical properties and are usually considered an integral system for chemical research in various fields. In this work, a model study based on a Li-S battery was performed to reveal the variation between the electrochemical properties of the two S isotopes. Provided with the same octatomic ring structure, the cyclo-34S8 molecules form stronger S-S bonds than cyclo-32S8 and are more prone to react with Li. The soluble Li polysulfides generated by the Li-34S conversion reaction show a stronger cation-solvent interaction yet a weaker cation-anion interaction than the 32S-based counterparts, which facilitates quick solvation of polysulfides yet hinders their migration from the cathode to the anode. Consequently, the Li-34S cell shows improved cathode reaction kinetics at the solid-liquid interface and inhibited shuttle of polysulfides through the electrolyte so that it demonstrates better cycling performance than the Li-32S cell. Based on the varied shuttle kinetics of the isotopic-S-based polysulfides, an electrochemical separation method for 34S/32S isotope is proposed, which enables a notably higher separation factor than the conventional separation methods via chemical exchange or distillation and brings opportunities to low-cost manufacture, utilization, and research of heavy chalcogen isotopes.
Collapse
Affiliation(s)
- Xue-Ting Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Yu-Hui Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Wen-Peng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Ying Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Yu-Guo Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sen Xin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
5
|
Tang B, Wei Y, Jia R, Zhang F, Tang Y. Rational Design of High-Loading Electrodes with Superior Performances Toward Practical Application for Energy Storage Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308126. [PMID: 38009584 DOI: 10.1002/smll.202308126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
High-loading electrodes play a crucial role in designing practical high-energy batteries as they reduce the proportion of non-active materials, such as current separators, collectors, and battery packaging components. This design approach not only enhances battery performance but also facilitates faster processing and assembly, ultimately leading to reduced production costs. Despite the existing strategies to improve rechargeable battery performance, which mainly focus on novel electrode materials and high-performance electrolyte, most reported high electrochemical performances are achieved with low loading of active materials (<2 mg cm-2). Such low loading, however, fails to meet application requirements. Moreover, when attempting to scale up the loading of active materials, significant challenges are identified, including sluggish ion diffusion and electron conduction kinetics, volume expansion, high reaction barriers, and limitations associated with conventional electrode preparation processes. Unfortunately, these issues are often overlooked. In this review, the mechanisms responsible for the decay in the electrochemical performance of high-loading electrodes are thoroughly discussed. Additionally, efficient solutions, such as doping and structural design, are summarized to address these challenges. Drawing from the current achievements, this review proposes future directions for development and identifies technological challenges that must be tackled to facilitate the commercialization of high-energy-density rechargeable batteries.
Collapse
Affiliation(s)
- Bin Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yike Wei
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Rui Jia
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Fan Zhang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Xing L, Chen Z, Zhan G, Huang Z, Li M, Li Y, Wang L, Li J. Sulfur Migration Enhanced Proton-Coupled Electron Transfer for Efficient CO 2 Desorption with Core-Shelled C@Mn 3O 4. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4606-4616. [PMID: 38427797 DOI: 10.1021/acs.est.3c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Transforming hazardous species into active sites by ingenious material design was a promising and positive strategy to improve catalytic reactions in industrial applications. To synergistically address the issue of sluggish CO2 desorption kinetics and SO2-poisoning solvent of amine scrubbing, we propose a novel method for preparing a high-performance core-shell C@Mn3O4 catalyst for heterogeneous sulfur migration and in situ reconstruction to active -SO3H groups, and thus inducing an enhanced proton-coupled electron transfer (PCET) effect for CO2 desorption. As anticipated, the rate of CO2 desorption increases significantly, by 255%, when SO2 is introduced. On a bench scale, dynamic CO2 capture experiments reveal that the catalytic regeneration heat duty of SO2-poisoned solvent experiences a 32% reduction compared to the blank case, while the durability of the catalyst is confirmed. Thus, the enhanced PCET of C@Mn3O4, facilitated by sulfur migration and simultaneous transformation, effectively improves the SO2 resistance and regeneration efficiency of amine solvents, providing a novel route for pursuing cost-effective CO2 capture with an amine solvent.
Collapse
Affiliation(s)
- Lei Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhen Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guoxiong Zhan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhoulan Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Mingyue Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuchen Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
7
|
Sun L, Liu Y, Xie J, Zhang F, Jiang R, Jin Z. Encapsulating Sulfur into a Gel-Derived Nitrogen-Doped Mesoporous and Microporous Carbon Sponge for High-Performance Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38412035 DOI: 10.1021/acsami.3c15984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The practical application of Li-S batteries (LSBs) has long been impeded by the inefficient utilization of sulfur and slow kinetics. Utilizing conductive carbonaceous frameworks as a host scaffold presents an efficient and cost-effective approach to enhance sulfur utilization for redox reactions in LSBs. However, the interaction of pure carbon materials with lithium polysulfide intermediates (LiPSs) is limited to weak van der Waals forces. Hence, the development of an economical method for synthesizing heteroatom-doped carbon materials for sulfur fixation is of paramount importance. In this study, we introduce a hierarchical porous nitrogen-doped carbon sponge (NPCS) with an exceptionally high BET surface area of 3182.2 m2 g-1, achieved through a facile template-assisted polymerization method. The incorporation of inorganic salts, free radical polymerization, and deuteric freeze-drying techniques facilitates the formation of hierarchical pores within the NPCS. After sulfur fixation, the resulting S/NPCS electrode demonstrates remarkable electrochemical performance in LSBs. Specifically, it achieves an 80% sulfur utilization rate, maintains a high reversible specific capacity of 400 mA h g-1 even after 600 cycles at a demanding current density of 5.0 A g-1, and exhibits superior rate capability. It is believed that this work will inspire the rational design of cost-effective carbon-based electrodes for high-performance LSBs.
Collapse
Affiliation(s)
- Lin Sun
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yanxiu Liu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jie Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Feng Zhang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ruiyu Jiang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
- Key Laboratory of Inorganic Functional Materials and Intelligent Manufacturing of Shandong Province, CNBM Technology Innovation Academy, Zaozhuang 277116, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Luo T, Wang Y, Elander B, Goldstein M, Mu Y, Wilkes J, Fahrenbruch M, Lee J, Li T, Bao JL, Mohanty U, Wang D. Polysulfides in Magnesium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306239. [PMID: 37740905 DOI: 10.1002/adma.202306239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Mg-S batteries hold great promise as a potential alternative to Li-based technologies. Their further development hinges on solving a few key challenges, including the lower capacity and poorer cycling performance when compared to Li counterparts. At the heart of the issues is the lack of knowledge on polysulfide chemical behaviors in the Mg-S battery environment. In this Review, a comprehensive overview of the current understanding of polysulfide behaviors in Mg-S batteries is provided. First, a systematic summary of experimental and computational techniques for polysulfide characterization is provided. Next, conversion pathways for Mg polysulfide species within the battery environment are discussed, highlighting the important role of polysulfide solubility in determining reaction kinetics and overall battery performance. The focus then shifts to the negative effects of polysulfide shuttling on Mg-S batteries. The authors outline various strategies for achieving an optimal balance between polysulfide solubility and shuttling, including the use of electrolyte additives, polysulfide-trapping materials, and dual-functional catalysts. Based on the current understanding, the directions for further advancing knowledge of Mg polysulfide chemistry are identified, emphasizing the integration of experiment with computation as a powerful approach to accelerate the development of Mg-S battery technology.
Collapse
Affiliation(s)
- Tongtong Luo
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Yang Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Brooke Elander
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Michael Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Yu Mu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - James Wilkes
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Justin Lee
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Tevin Li
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Dunwei Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
9
|
Guan X, Pei H, Chen X, Chang C, Shao S, Zhang YM, Zhou X, Nie H, Xie X. Anion receptor and heavy metal-free redox mediator decorated separator for lithium-sulfur batteries. J Colloid Interface Sci 2023; 652:997-1005. [PMID: 37639930 DOI: 10.1016/j.jcis.2023.08.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
The adsorption-catalysis synergy for accelerated conversion of polysulfides is critical toward the electrochemical stability of lithium-sulfur battery (LSB). Herein, a non-metallic polymer network with anion receptor units, trifluoromethanesulfonyl (CF3SO2-) substituted aza-ether, was in-situ integrated on PE separator, working as an efficient host for anchoring lithium thiophosphates (LPS) as redox mediators and polysulfides through Lewis acid-base interaction. The anchored LPS on the modified PE separator displayed a robust chemical adsorption ability towards polysulfides through the formation of SS bond. Meanwhile, LPS decreased the energy barrier of Li2S nucleation and promoted redox reaction kinetics. The battery with LPS decorated separator revealed a long cycling lifespan with a per cycle decay of 0.056 % after 600 cycles, and a competitive initial capacity of 889.1 mAh/g when the of sulfur cathode increased to 3 mg cm-2. This work developed a new design strategy to promote the utilization of lithium phosphorus sulfide compounds in LSB.
Collapse
Affiliation(s)
- Xin Guan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huijie Pei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaoyu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chen Chang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Siyuan Shao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xingping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hui Nie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Ren X, Wang Q, Pu Y, Sun Q, Sun W, Lu L. Synergizing Spatial Confinement and Dual-Metal Catalysis to Boost Sulfur Kinetics in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304120. [PMID: 37467076 DOI: 10.1002/adma.202304120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Sluggish kinetics and parasitic shuttling reactions severely impede lithium-sulfur (Li-S) battery operation; resolving these issues can enhance the capacity retention and cyclability of Li-S cells. Therefore, an effective strategy featuring core-shell-structured Co/Ni bimetal-doped metal-organic framework (MOF)/sulfur nanoparticles is reported herein for addressing these problems; this approach offers unprecedented spatial confinement and abundant catalytic sites by encapsulating sulfur within an ordered architecture. The protective shells exhibit long-term stability, ion screening, high lithium-polysulfide adsorption capability, and decent multistep catalytic conversion. Additionally, the delocalized electrons of the MOF endow the cathodes with superior electron/lithium-ion transfer ability. Via multiple physicochemical and theoretical analysis, the resulting synergistic interactions are proved to significantly promote interfacial charge-transfer kinetics, facilitate sulfur conversion dynamics, and inhibit shuttling. The assembled Li-S batteries deliver a stable, highly reversible capacity with marginal decay (0.075% per cycle) for 400 cycles at 0.2 C, a pouch-cell areal capacity of 3.8 mAh cm-2 for 200 cycles under a high sulfur loading, as well as remarkably improved pouch-cell performance.
Collapse
Affiliation(s)
- Xiaoyan Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Qin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yulai Pu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qi Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
11
|
Cheng H, Shen Z, Liu W, Luo M, Huo F, Hui J, Zhu Q, Zhang H. Vanadium Intercalation into Niobium Disulfide to Enhance the Catalytic Activity for Lithium-Sulfur Batteries. ACS NANO 2023. [PMID: 37470340 DOI: 10.1021/acsnano.3c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Despite their high specific energy and great promise for next-generation energy storage, lithium-sulfur (Li-S) batteries suffer from polysulfide shuttling, slow redox kinetics, and poor cyclability. Catalysts are needed to accelerate polysulfide conversion and suppress the shuttling effect. However, a lack of structure-activity relationships hinders the rational development of efficient catalysts. Herein, we studied the Nb-V-S system and proposed a V-intercalated NbS2 (Nb3VS6) catalyst for high-efficiency Li-S batteries. Structural analysis and modeling revealed that undercoordinated sulfur anions of [VS6] octahedra on the surface of Nb3VS6 may break the catalytic inertness of the basal planes, which are usually the primary exposed surfaces of many 2D layered disulfides. Using Nb3VS6 as the catalyst, the resultant Li-S batteries delivered high capacities of 1541 mAh g-1 at 0.1 C and 1037 mAh g-1 at 2 C and could retain 73.2% of the initial capacity after 1000 cycles. Such an intercalation-induced high activity offers an alternative approach to building better Li-S catalysts.
Collapse
Affiliation(s)
- Huiting Cheng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zihan Shen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Mingting Luo
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qingshan Zhu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huigang Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
12
|
Feng L, Zhu Z, Yan R, Fu X, He X, Wu D, Li H, Guo Z, Yang W, Wang Y. Mass Production of Customizable Core-Shell Active Materials in Seconds by Nano-Vapor Deposition for Advancing Lithium Sulfur Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207584. [PMID: 37144509 PMCID: PMC10369239 DOI: 10.1002/advs.202207584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Rational design and scalable production of core-shell sulfur-rich active materials is vital for not only the practical success of future metal-sulfur batteries but also for a deep insight into the core-shell design for sulfur-based electrochemistry. However, this is a big challenge mainly due to the lack of efficient strategy for realizing precisely controlled core-shell structures. Herein, by harnessing the frictional heating and dispersion capability of the nanostorm technology developed in the authors' laboratory, it is surprisingly found that sulfur-rich active particles can be coated with on-demand shell nanomaterials in seconds. To understand the process, a micro-adhesion guided nano-vapor deposition (MAG-NVD) working mechanism is proposed. Enabled by this technology, customizable nano-shell is realized in a super-efficient and solvent-free way. Further, the different roles of shell characteristics in affecting the sulfur-cathode electrochemical performance are discovered and clarified. Last, large-scale production of calendaring-compatible cathode with the optimized core-shell active materials is demonstrated, and a Li-S pouch-cell with 453 Wh kg-1 @0.65 Ah is also reported. The proposed nano-vapor deposition may provide an attractive alternative to the well-known physical and chemical vapor deposition technologies.
Collapse
Affiliation(s)
- Lanxiang Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610225, China
| | - Zhiwei Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xuewei Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xuewei He
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Dichen Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hua Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zaiping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Zhen M, Li K, Liu M. Manipulating Li 2 S Redox Kinetics and Lithium Dendrites by Core-Shell Catalysts under High Sulfur Loading and Lean-Electrolyte Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207442. [PMID: 36932885 PMCID: PMC10190580 DOI: 10.1002/advs.202207442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Indexed: 05/18/2023]
Abstract
For practical lithium-sulfur batteries (LSBs), the high sulfur loading and lean-electrolyte are necessary conditions to achieve the high energy density. However, such extreme conditions will cause serious battery performance fading, due to the uncontrolled deposition of Li2 S and lithium dendrite growth. Herein, the tiny Co nanoparticles embedded N-doped carbon@Co9 S8 core-shell material (CoNC@Co9 S8 NC) is designed to address these challenges. The Co9 S8 NC-shell effectively captures lithium polysulfides (LiPSs) and electrolyte, and suppresses the lithium dendrite growth. The CoNC-core not only improves electronic conductivity, but also promotes Li+ diffusion as well as accelerates Li2 S deposition/decomposition. Consequently, the cell with CoNC@Co9 S8 NC modified separator delivers a high specific capacity of 700 mAh g-1 with a low-capacity decay rate of 0.035% per cycle at 1.0 C after 750 cycles under a sulfur loading of 3.2 mg cm-2 and a E/S ratio of 12 µL mg-1 , and a high initial areal capacity of 9.6 mAh cm-2 under a high sulfur loading of 8.8 mg cm-2 and a low E/S ratio of 4.5 µL mg-1 . Besides, the CoNC@Co9 S8 NC exhibits an ultralow overpotential fluctuation of 11 mV at a current density of 0.5 mA cm-2 after 1000 h during a continuous Li plating/striping process.
Collapse
Affiliation(s)
- Mengmeng Zhen
- State Key Laboratory of Medicinal Chemical BiologyNankai University300350TianjinChina
- School of Energy and Environmental EngineeringHebei University of TechnologyTianjin300071China
| | - Kaifeng Li
- School of Energy and Environmental EngineeringHebei University of TechnologyTianjin300071China
| | - Mingyang Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai University300350TianjinChina
| |
Collapse
|
14
|
Dong H, Qi S, Wang L, Chen X, Xiao Y, Wang Y, Sun B, Wang G, Chen S. Conductive Polymer Coated Layered Double Hydroxide as a Novel Sulfur Reservoir for Flexible Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300843. [PMID: 37035959 DOI: 10.1002/smll.202300843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Lithium-sulfur battery (LSB) is widely regarded as the most promising next-generation energy storage system owing to its high theoretical capacity and low cost. However, the practical application of LSBs is mainly hampered by the low electronic conductivity of the sulfur cathode and the notorious "shuttle effect", which lead to high voltage polarization, severe over-charge behavior, and rapid capacity decay. To address these issues, a novel sulfur reservoir is synthesized by coating polypyrrole (PPy) thin film on hollow layered double hydroxide (LDH) (PPy@LDH). After compositing with sulfur, such PPy@LDH-S cathode shows a multi-functional effect to reserve lithium polysulfides (LiPSs). In addition, the unique architecture provides sufficient inner space to encapsulate the volume expansion and enhances the reaction kinetics of sulfur-based redox chemistry. Theoretical calculations have illustrated that the PPy@LDH has shown stronger chemical adsorption capability for LiPSs than those of porous carbon and LDH, preventing the shuttling of LiPSs and enhancing the nucleation affinity of liquid-solid conversion. As a result, the PPy@LDH-S electrode delivers a stable cycling performance and a superior rate capability. Flexible battery has demonstrated this PPy@LDH-S electrode can work properly with treatments of bending, folding, and even twisting, paving the way for wearable devices and flexible electronics.
Collapse
Affiliation(s)
- Hanghang Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuo Qi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xianfei Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Shuangqiang Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
15
|
Lin G, Liang M, Liu L, Liu J, Ao Z, Shi Z, Ke X. P-P Orbital Interaction Enables Single-Crystalline Semimetallic β-MoTe 2 Nanosheets as Efficient Electrocatalysts for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55616-55626. [PMID: 36475586 DOI: 10.1021/acsami.2c17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The practical implementation of lithium-sulfur batteries (LSBs) has been impeded by the sluggish redox kinetics of lithium polysulfides (LiPSs) and shuttle effect of soluble LiPSs during charge/discharge. It is desirable to exploit materials combining superior electrical conductivity with excellent catalytic activity for use as electrocatalysts in LSBs. Herein, we report the employment of chemical vapor transport (CVT) method followed by an electrochemical intercalation process to fabricate high-quality single-crystalline semimetallic β-MoTe2 nanosheets, which are utilized to manipulate the LiPSs conversion kinetics. The first-principles calculations prove that β-MoTe2 could lower the Gibbs free-energy barrier for Li2S2 transformation to Li2S. The wavefunction analysis demonstrates that the p-p orbital interaction between Te p and S p orbitals accounts for the strong electronic interaction between the β-MoTe2 surface and Li2S2/Li2S, making bonding and electron transfer more efficient. As a result, a β-MoTe2/CNT@S-based LSB cell can deliver an excellent cycling performance with a low capacity fade rate of 0.11% per cycle over 300 cycles at 1C. Our work might not only provide a universal route to prepare high-quality single-crystalline transition-metal dichalcogenides (TMDs) nanosheets for use as electrocatalysts in LSBs, but also suggest a different viewpoint for the rational design of LiPSs conversion electrocatalysts.
Collapse
Affiliation(s)
- Guide Lin
- Department of New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Liang
- Department of New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liying Liu
- Department of New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Liu
- Department of New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhimin Ao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Zhicong Shi
- Department of New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xi Ke
- Department of New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde 415000, China
| |
Collapse
|
16
|
Lin Y, Li J, Xie W, Ouyang Z, Zhao J, Xiao Y, Lei S, Cheng B. FeCoNi Ternary Nano-Alloys Embedded in a Nitrogen-Doped Porous Carbon Matrix with Enhanced Electrocatalysis for Stable Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51001-51009. [PMID: 36318543 DOI: 10.1021/acsami.2c15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The application of composite materials that combine the advantages of carbonaceous material and metal alloy proves to be a valid method for improving the performance of lithium-sulfur batteries (LSBs). Herein iron-cobalt-nickel (FeCoNi) ternary alloy nanoparticles (FNC) that spread on nitrogen-doped carbon (NC) are obtained by a strategy of low-temperature sol-gel followed by annealing at 800 °C under an argon/hydrogen atmosphere. Benefiting from the synergistic effect of different components of FNC and the conductive network provided by the NC, not only can the "shuttle effect" of lithium polysulfides (LiPS) be suppressed, but also the conversion of LiPS, the diffusion of Li+, and the deposition of Li2S can be accelerated. Taking advantage of those merits, the batteries assembled with an FNC@NC-modified polypropylene (PP) separator (FNC@NC//PP) can deliver a high reversible specific capacity of 1325 mAh g-1 at 0.2 C and maintain 950 mAh g-1 after 200 cycles, and they can also achieve a low capacity fading rate of 0.06% per cycle over 500 cycles at 1 C. More impressively, even under harsh test conditions (the ratio of electrolyte to sulfur (E/S) = 6 μL mg-1 and sulfur loading = 4.7 mg cm-2 and E/S = 10 μL mg-1 and sulfur loading = 5.9 mg cm-2), the area capacity of batteries is still much higher than 4 mAh cm-2.
Collapse
Affiliation(s)
- Yang Lin
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Jianchao Li
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Wenju Xie
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
- College of Ecology and Resources Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Fujian 354300, P. R. China
| | - Zhiyong Ouyang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Jie Zhao
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Yanhe Xiao
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Shuijin Lei
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Baochang Cheng
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| |
Collapse
|
17
|
Zhang Z, Mo J, Yu P, Feng L, Wang Y, Lu Y, Yang W. High-Performance Flexible Sulfur Cathodes with Robust Electrode Skeletons Built by a Hierarchical Self-Assembling Slurry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201881. [PMID: 35853244 PMCID: PMC9475518 DOI: 10.1002/advs.202201881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Indexed: 02/05/2023]
Abstract
The electrochemical performance of lithium-sulfur batteries is fundamentally determined by the structural and mechanical stability of their composite sulfur cathodes. However, the development of cost-effective strategies for realizing robust hierarchical composite electrode structures remains highly challenging due to uncontrollable interactions among the components. The present work addresses this issue by proposing a type of self-assembling electrode slurry based on a well-designed two-component (polyacrylonitrile and polyvinylpyrrolidone) polar binder system with carbon nanotubes that forms hierarchical porous structures via optimized water-vapor-induced phase separation. The electrode skeleton is a highly robust and flexible electron-conductive network, and the porous structure provides hierarchical ion-transport channels with strong polysulfide trapping capability. Composite sulfur cathodes prepared with a sulfur loading of 4.53 mg cm-2 realize a very stable specific capacity of 485 mAh g-1 at a current density of 3.74 mA cm-2 after 1000 cycles. Meanwhile, a composite sulfur cathode with a high sulfur loading of 14.5 mg cm-2 in a lithium-sulfur pouch cell provides good flexibility and delivers a high capacity of 600 mAh g-1 at a current density of 0.72 mA cm-2 for 78 cycles.
Collapse
Affiliation(s)
- Zhengmin Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065China
| | - Jiangyang Mo
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Peng Yu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065China
- State key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Lanxiang Feng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065China
| | - Yu Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Wei Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065China
| |
Collapse
|