1
|
Huang Y, Ren Z, Fan Z, Zhang H, Wu Y, Wang Y, Hu Z, Quan X, Wang Z, Niu Z. Isolation of Polyethylene Glycol with Larger Molecular Weights via Metal-Organic Frameworks. Macromol Rapid Commun 2024; 45:e2400535. [PMID: 39078658 DOI: 10.1002/marc.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 07/31/2024]
Abstract
Polymer products typically present as mixtures with a range of molecular weights, which notably influence the expression of their properties. In this study, a technique is proposed to separate polyethylene glycol (PEG) mixtures of varying molecular weights using metal-organic frameworks (MOFs), thereby narrowing down their molecular weight distribution. Due to the hydrogen bond interactions between PEG and -OH groups in the pores of NU-1000, NU-1000 can selectively adsorb PEG with larger molecular weights from PEG mixture. This separation method consistently yields with narrower molecular weight distribution across multiple cycles. This is the first application of MOFs in regulating the dispersity (Ð) of polymers in solution, providing a novel approach for separating and purifying mixed molecular weight polymers.
Collapse
Affiliation(s)
- Yali Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Ziye Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Ziwen Fan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Hanwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Yueyue Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zhuoyi Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Xueheng Quan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zhao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| |
Collapse
|
2
|
Hosono N, Kono Y, Mizutani N, Koga D, Uemura T. Detecting single-point isomeric differences in polymer chains by MOF column chromatography. Chem Commun (Camb) 2024; 60:13690-13693. [PMID: 39495197 DOI: 10.1039/d4cc04902k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Liquid chromatography with a metal-organic framework (MOF) as the stationary phase enables nanopore threading-based recognition of polymers and identification of single-point isomeric structural differences in the polymer main chain. The polymer adsorption affinity to the MOF and transient kinetics of polymer insertion into the nanopores play crucial roles in the recognition process.
Collapse
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yu Kono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Nagi Mizutani
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Daichi Koga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
3
|
Feng Y, Wu C, Hou Y, Zhang Y, Yin D, Zhang W, Zhang S. Dialdehyde cellulose-based mixed-mode stationary phases for diversified high-performance liquid chromatography separations. J Chromatogr A 2024; 1736:465349. [PMID: 39293277 DOI: 10.1016/j.chroma.2024.465349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
To deal with complicated separation situations, this study successfully prepared two mixed-mode chromatography (MMC) stationary phases, CCL-SIL and PCL-SIL, by functionalizing dialdehyde cellulose (DAC) derivatives. In liquid chromatography applications, CCL-SIL exhibited superior separation performance for nucleosides and bases in HILIC mode, while PCL-SIL performed better in RPLC and IEC modes. Their distinct separation mechanisms were also elucidated by quantum chemical calculations. Both CCL-SIL and PCL-SIL showed good stability and reproducibility, with relative standard deviations of retention time, peak area, and peak height below 7.79 % and 4.37 % for multiple injections. Particularly, the PCL-SIL column and the CCL-SIL column were successfully used for the quantitative analysis of trace targets in real samples with complex matrix, demonstrating high accuracy and precision.
Collapse
Affiliation(s)
- Yumin Feng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chaojun Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yafei Hou
- High & New Technology Research Center of Henan Academy of Sciences, Hongzhuan Road 56, Zhengzhou 450002, PR China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China; Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, PR China.
| |
Collapse
|
4
|
Ariga K. Liquid-Liquid and Liquid-Solid Interfacial Nanoarchitectonics. Molecules 2024; 29:3168. [PMID: 38999120 PMCID: PMC11243083 DOI: 10.3390/molecules29133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nanoscale science is becoming increasingly important and prominent, and further development will necessitate integration with other material chemistries. In other words, it involves the construction of a methodology to build up materials based on nanoscale knowledge. This is also the beginning of the concept of post-nanotechnology. This role belongs to nanoarchitectonics, which has been rapidly developing in recent years. However, the scope of application of nanoarchitectonics is wide, and it is somewhat difficult to compile everything. Therefore, this review article will introduce the concepts of liquid and interface, which are the keywords for the organization of functional material systems in biological systems. The target interfaces are liquid-liquid interface, liquid-solid interface, and so on. Recent examples are summarized under the categories of molecular assembly, metal-organic framework and covalent organic framework, and living cell. In addition, the latest research on the liquid interfacial nanoarchitectonics of organic semiconductor film is also discussed. The final conclusive section summarizes these features and discusses the necessary components for the development of liquid interfacial nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
5
|
Ariga K. Confined Space Nanoarchitectonics for Dynamic Functions and Molecular Machines. MICROMACHINES 2024; 15:282. [PMID: 38399010 PMCID: PMC10892885 DOI: 10.3390/mi15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanotechnology has advanced the techniques for elucidating phenomena at the atomic, molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to create functional materials from unit structures. Consider the material function when nanoarchitectonics enables the design of materials whose internal structure is controlled at the nanometer level. Material function is determined by two elements. These are the functional unit that forms the core of the function and the environment (matrix) that surrounds it. This review paper discusses the nanoarchitectonics of confined space, which is a field for controlling functional materials and molecular machines. The first few sections introduce some of the various dynamic functions in confined spaces, considering molecular space, materials space, and biospace. In the latter two sections, examples of research on the behavior of molecular machines, such as molecular motors, in confined spaces are discussed. In particular, surface space and internal nanospace are taken up as typical examples of confined space. What these examples show is that not only the central functional unit, but also the surrounding spatial configuration is necessary for higher functional expression. Nanoarchitectonics will play important roles in the architecture of such a total system.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
6
|
Jagirani MS, Zhou W, Nazir A, Akram MY, Huo P, Yan Y. A Recent Advancement in Food Quality Assessment: Using MOF-Based Sensors: Challenges and Future Aspects. Crit Rev Anal Chem 2024:1-22. [PMID: 38252119 DOI: 10.1080/10408347.2023.2300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Monitoring food safety is crucial and significantly impacts the ecosystem and human health. To adequately address food safety problems, a collaborative effort needed from government, industry, and consumers. Modern sensing technologies with outstanding performance are needed to meet the growing demands for quick and accurate food safety monitoring. Recently, emerging sensors for regulating food safety have been extensively explored. Along with the development in sensing technology, the metal-organic frameworks (MOF)-based sensors gained more attention due to their excellent sensing, catalytic, and adsorption properties. This review summarizes the current advancements and applications of MOFs-based sensors, including colorimetric, electrochemical, luminescent, surface-enhanced Raman scattering, and electrochemiluminescent sensors. and also focused on the applications of MOF-based sensors for the monitoring of toxins such as heavy metals, pesticide residues, mycotoxins, pathogens, and illegal food additives from food samples. Future trends, as well as current developments in MOF-based materials.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Yasir Akram
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
7
|
Hung HL, Iizuka T, Deng X, Lyu Q, Hsu CH, Oe N, Lin LC, Hosono N, Kang DY. Engineering gas separation property of metal-organic framework membranes via polymer insertion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Wu Q, Li T, Song J, Sun X, Ren X, Fu C, Chen L, Tan L, Niu M, Meng X. A Novel Instantaneous Self-Assembled Hollow MOF-Derived Nanodrug for Microwave Thermo-Chemotherapy in Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51656-51668. [PMID: 36355432 DOI: 10.1021/acsami.2c13561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hollow materials derived from metal-organic frameworks (MOFs) have emerged in the biomedical field due to their unique properties, and different synthesis methods have been proposed. However, so far, the large-scale use of hollow MOFs is mostly limited by the timeliness of synthesis methods. Herein, we propose a new ultrasonic aerosol flow strategy for the instantaneous synthesis of a Zr-MOF-derived hollow sphere complex (ZC-HSC) in only one step. Through rapid transient heating, the coordination between metal salts and organic ligands occurs along with prompt evaporation of the solvent. The whole process lasts for only about 21 s, compared with several steps that take hours or even days for conventional synthesis methods. Based on the ZC-HSC, we designed a nanodrug with the functions of manipulating the tumor microenvironment, which can reshape the tumor microenvironment by improving tumor hypoxia and inflammatory microenvironment and promoting antiangiogenic therapy. Combined with microwave thermo-chemotherapy, the nanodrugs effectively treat triple-negative breast cancer (the tumor cell survival rate was only 34.76 and 31.05% in normoxic and hypoxic states, respectively, and the tumor inhibition rate reached 87.9% at the animal level), providing a new theoretical basis for the treatment of triple-negative breast cancer. This rapid, one-step, and continuous ultrasonic aerosol flow strategy has bright prospects in the synthesis of MOF-derived hollow materials and promotes the further development of large-scale applications of biological nanomaterials.
Collapse
Affiliation(s)
- Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Li
- China Rehabilitation Science Institute, Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing 100068, China
| | - Jingjing Song
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohan Sun
- Department of Interventional Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang 110001, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lufeng Chen
- Department of Radiation Oncology, First Clinical Medical School and First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Niu
- Department of Interventional Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang 110001, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Fu G, Gao C, Quan K, Li H, Qiu H, Chen J. Phosphorus-doped deep eutectic solvent-derived carbon dots-modified silica as a mixed-mode stationary phase for reversed-phase and hydrophilic interaction chromatography. Anal Bioanal Chem 2022:10.1007/s00216-022-04405-9. [PMID: 36350343 DOI: 10.1007/s00216-022-04405-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
Abstract
In this work, phosphorus-doped carbon dots (P-DESCDs) were successfully prepared using choline chloride/lactic acid type deep eutectic solvent and phosphoric acid as ingredients, and (3-aminopropyl) trimethoxysilane was used as a bridge to graft P-DESCDs onto the silica surface to obtain a new mixed-mode stationary phase (Sil-P-DESCDs) for reversed-phase and hydrophilic interaction liquid chromatography. The successful preparation of the stationary phase was confirmed by laser scanning confocal microscopy, elemental analysis, and Fourier transform infrared spectrometry. Interestingly, the doping of phosphorus greatly improved the separation performance and hydrophilicity of the Sil-P-DESCDs column. The Sil-P-DESCDs column was found to have certain hydrophobicity, hydrogen bonding ability and shape selectivity by Tanaka and Engelhardt standard test mixtures, and a series of hydrophilic and hydrophobic compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, sulfonamides, aromatic amines, phenols, flavonoids, nucleoside bases, and alkaloids. In addition, the effects of mobile phase ratio, column temperature, flow rate, salt concentration, and pH on the retention of analytes on Sil-P-DESCDs columns were investigated. Finally, the Sil-P-DESCDs column was applied to the qualitative and quantitative analysis of calcein-7-glucoside in the real sample of medicinal Astragalus pellets, and it was found at a concentration of 0.02 mg/mL.
Collapse
|
10
|
Incorporation of metal-organic framework MOFs-5 into the polymer monolith via the surface covalent immobilization method for enhanced capillary liquid chromatographic separation of benzene homologues. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Chen Y, Xia L, Li G. The progress on porous organic materials for chiral separation. J Chromatogr A 2022; 1677:463341. [PMID: 35870277 DOI: 10.1016/j.chroma.2022.463341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Chiral compounds have similar structures and properties, but their pharmacological action is very different or even opposite. Therefore, the separation of chiral compounds has great significance in pharmaceutical and agriculture. Porous organic materials are novel crystalline porous materials, which possess high surface area, controllable pore size, and favorable functionalization. Therefore, porous organic materials are considered to be an ideal material for chiral separation. In this review, we summarized the progress of chiral porous organic materials for chiral separation in recent years. Furthermore, the applications of chiral porous organic materials as chiral separation medias (chromatography stationary phases and membrane materials) in enantioseparation were highlighted. Finally, the remaining challenges and future directions for porous organic materials in chiral separation were also briefly outlined further to promote the development of porous organic materials in chiral separation.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Xu H, Guo J, Li C, Zhao J, Gao Z, Song YY. Nanoarchitectonics of a MOF-in-Nanochannel (HKUST-1/TiO 2) Membrane for Multitarget Selective Enrichment and Staged Recovery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22006-22015. [PMID: 35533013 DOI: 10.1021/acsami.2c05296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enrichment and separation of specific endogenous molecules are essential for disease diagnosis and the pharmaceutical industry. Although many solid sorbents have been developed for target molecule enrichment, simultaneous separation of multitargets is still a challenge for adsorbents. In this study, we develop a multitarget selective sorbent based on a nanochannel membrane prepared by the anodization of a Ti-Cu alloy. The in situ growth of a metal-organic framework (MOF, herein using Cu-based HKUST-1) in the nanochannels enables the resulting MOF-in-nanochannel membrane to act as a nanofilter. Benefitting from the size-exclusion effect of MOFs and the distinct surface characteristics of each component in the HKUST-1/TiO2 nanochannels, the as-proposed membranes can be simply operated as a filter and exhibit satisfactory selectivities and enrichment capacities in the separation of aromatic amino acids, histidine-rich proteins, and phosphoproteins. More importantly, the adsorbed multitargets can be further controllably released from the membrane in a sequence via a staged recovery process. The use of this system is envisioned to provide an innovative and potential design for efficient sorption media for the selective enrichment and staged separation of specific biomolecules.
Collapse
Affiliation(s)
- Huijie Xu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chaowei Li
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junjian Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|