1
|
Kundu B, Mondal P, Tebbe D, Hasan MN, Chakraborty SK, Metzelaars M, Kögerler P, Karmakar D, Pradhan GK, Stampfer C, Beschoten B, Waldecker L, Sahoo PK. Electrically Controlled Excitons, Charge Transfer Induced Trions, and Narrowband Emitters in MoSe 2-WSe 2 Lateral Heterostructure. NANO LETTERS 2024. [PMID: 39526856 DOI: 10.1021/acs.nanolett.4c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Controlling excitons and their transport in two-dimensional (2D) transition metal dichalcogenide heterostructures is central to advancing photonics and electronics on-chip integration. We investigate the controlled generation and manipulation of excitons and their complexes in monolayer MoSe2-WSe2 lateral heterostructures (LHSs). Incorporating graphene as a back gate and edge contact in a field-effect transistor geometry, we achieve the precise electrical tuning of exciton complexes and their transfer across interfaces. Photoluminescence and photocurrent maps at 4 K reveal the synergistic effect of the local electric field and interface phenomena in the modulation of excitons, trions, and free carriers. We observe spatial variations in the exciton and trion densities driven by exciton-trion conversion under electrical manipulation. Additionally, we demonstrate controlled narrow-band emissions within the LHS through carrier injection and electrical biasing. Density functional theory calculation reveals significant band modification at the lateral interfaces. This work advances exciton manipulation in LHS and shows promise for next-generation 2D quantum devices.
Collapse
Affiliation(s)
- Baisali Kundu
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Priyanka Mondal
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - David Tebbe
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Md Nur Hasan
- Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
| | | | - Marvin Metzelaars
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Paul Kögerler
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Debjani Karmakar
- Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Trombay, Mumbai 400094, India
| | - Gopal K Pradhan
- Department of Physics, School of Applied Sciences, KIIT Deemed to be University, Odisha 751024, India
| | - Christoph Stampfer
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Bernd Beschoten
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Lutz Waldecker
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Prasana Kumar Sahoo
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
2
|
Peeters W, Toyouchi S, Fujita Y, Wolf M, Fortuni B, Fron E, Inose T, Hofkens J, Endo T, Miyata Y, Uji-i H. Remote Excitation of Tip-Enhanced Photoluminescence with a Parallel AgNW Coupler. ACS OMEGA 2023; 8:38386-38393. [PMID: 37867716 PMCID: PMC10586305 DOI: 10.1021/acsomega.3c04952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023]
Abstract
Tip-enhanced photoluminescence (TEPL) microscopy allows for the correlation of scanning probe microscopic images and photoluminescent spectra at the nanoscale level in a similar way to tip-enhanced Raman scattering (TERS) microscopy. However, due to the higher cross-section of fluorescence compared to Raman scattering, the diffraction-limited background signal generated by far-field excitation is a limiting factor in the achievable spatial resolution of TEPL. Here, we demonstrate a way to overcome this drawback by using remote excitation TEPL (RE-TEPL). With this approach, the excitation and detection positions are spatially separated, minimizing the far-field contribution. Two probe designs are evaluated, both experimentally and via simulations. The first system consists of gold nanoparticles (AuNPs) through photoinduced deposition on a silver nanowire (AgNW), and the second system consists of two offset parallel AgNWs. This latter coupler system shows a higher coupling efficiency and is used to successfully demonstrate RE-TEPL spectral mapping on a MoSe2/WSe2 lateral heterostructure to reveal spatial heterogeneity at the heterojunction.
Collapse
Affiliation(s)
- Wannes Peeters
- Division
of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
| | - Shuichi Toyouchi
- Division
of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
| | - Yasuhiko Fujita
- Research
Institute for Sustainable Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST Chugoku), Kagamiyama 3-11-32, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Mathias Wolf
- Division
of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
| | - Beatrice Fortuni
- Division
of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
| | - Eduard Fron
- Division
of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
| | - Tomoko Inose
- Institute
for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- The
HAKUBI Center for Advanced Research, Kyoto
University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Johan Hofkens
- Division
of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Takahiko Endo
- Department
of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yasumitsu Miyata
- Department
of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Hiroshi Uji-i
- Division
of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
- Institute
for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- RIES, Hokkaido University, N20 W10, Kita-Ward, Sapporo 001-0020, Japan
| |
Collapse
|
3
|
Lamsaadi H, Beret D, Paradisanos I, Renucci P, Lagarde D, Marie X, Urbaszek B, Gan Z, George A, Watanabe K, Taniguchi T, Turchanin A, Lombez L, Combe N, Paillard V, Poumirol JM. Kapitza-resistance-like exciton dynamics in atomically flat MoSe 2-WSe 2 lateral heterojunction. Nat Commun 2023; 14:5881. [PMID: 37735478 PMCID: PMC10514293 DOI: 10.1038/s41467-023-41538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Being able to control the neutral excitonic flux is a mandatory step for the development of future room-temperature two-dimensional excitonic devices. Semiconducting Monolayer Transition Metal Dichalcogenides (TMD-ML) with extremely robust and mobile excitons are highly attractive in this regard. However, generating an efficient and controlled exciton transport over long distances is a very challenging task. Here we demonstrate that an atomically sharp TMD-ML lateral heterostructure (MoSe2-WSe2) transforms the isotropic exciton diffusion into a unidirectional excitonic flow through the junction. Using tip-enhanced photoluminescence spectroscopy (TEPL) and a modified exciton transfer model, we show a discontinuity of the exciton density distribution on each side of the interface. We introduce the concept of exciton Kapitza resistance, by analogy with the interfacial thermal resistance referred to as Kapitza resistance. By comparing different heterostructures with or without top hexagonal boron nitride (hBN) layer, we deduce that the transport properties can be controlled, over distances far greater than the junction width, by the exciton density through near-field engineering and/or laser power density. This work provides a new approach for controlling the neutral exciton flow, which is key toward the conception of excitonic devices.
Collapse
Affiliation(s)
| | - Dorian Beret
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
| | - Ioannis Paradisanos
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece
| | - Pierre Renucci
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
| | - Delphine Lagarde
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
| | - Bernhard Urbaszek
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ziyang Gan
- Friedrich Schiller University Jena, Institute of Physical Chemistry, 07743, Jena, Germany
| | - Antony George
- Friedrich Schiller University Jena, Institute of Physical Chemistry, 07743, Jena, Germany
- Abbe Centre of Photonics, 07745, Jena, Germany
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Andrey Turchanin
- Friedrich Schiller University Jena, Institute of Physical Chemistry, 07743, Jena, Germany
- Abbe Centre of Photonics, 07745, Jena, Germany
| | - Laurent Lombez
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France.
| | - Nicolas Combe
- CEMES-CNRS, Université de Toulouse, Toulouse, France
| | | | | |
Collapse
|
4
|
Naito H, Makino Y, Zhang W, Ogawa T, Endo T, Sannomiya T, Kaneda M, Hashimoto K, Lim HE, Nakanishi Y, Watanabe K, Taniguchi T, Matsuda K, Miyata Y. High-throughput dry transfer and excitonic properties of twisted bilayers based on CVD-grown transition metal dichalcogenides. NANOSCALE ADVANCES 2023; 5:5115-5121. [PMID: 37705802 PMCID: PMC10496764 DOI: 10.1039/d3na00371j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
van der Waals (vdW) layered materials have attracted much attention because their physical properties can be controlled by varying the twist angle and layer composition. However, such twisted vdW assemblies are often prepared using mechanically exfoliated monolayer flakes with unintended shapes through a time-consuming search for such materials. Here, we report the rapid and dry fabrication of twisted multilayers using chemical vapor deposition (CVD) grown transition metal chalcogenide (TMDC) monolayers. By improving the adhesion of an acrylic resin stamp to the monolayers, the single crystals of various TMDC monolayers with desired grain size and density on a SiO2/Si substrate can be efficiently picked up. The present dry transfer process demonstrates the one-step fabrication of more than 100 twisted bilayers and the sequential stacking of a twisted 10-layer MoS2 single crystal. Furthermore, we also fabricated hBN-encapsulated TMDC monolayers and various twisted bilayers including MoSe2/MoS2, MoSe2/WSe2, and MoSe2/WS2. The interlayer interaction and quality of dry-transferred, CVD-grown TMDCs were characterized by using photoluminescence (PL), cathodoluminescence (CL) spectroscopy, and cross-sectional electron microscopy. The prominent PL peaks of interlayer excitons can be observed for MoSe2/MoS2 and MoSe2/WSe2 with small twist angles at room temperature. We also found that the optical spectra were locally modulated due to nanosized bubbles, which are formed by the presence of interface carbon impurities. The present findings indicate the widely applicable potential of the present method and enable an efficient search of the emergent optical and electrical properties of TMDC-based vdW heterostructures.
Collapse
Affiliation(s)
- Hibiki Naito
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Yasuyuki Makino
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Wenjin Zhang
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Tomoya Ogawa
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Takahiko Endo
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Takumi Sannomiya
- Department of Materials Science and Engineering, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Masahiko Kaneda
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Kazuki Hashimoto
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Hong En Lim
- Department of Chemistry, Saitama University Saitama 338-8570 Japan
| | - Yusuke Nakanishi
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, NIMS Tsukuba 305-0044 Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, NIMS Tsukuba 305-0044 Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University Kyoto 611-0011 Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| |
Collapse
|
5
|
Li L, Wan L, Xia C, Sai Q, Talwar DN, Feng ZC, Liu H, Jiang J, Li P. The Spatial Correlation and Anisotropy of β-(Al xGa 1-x) 2O 3 Single Crystal. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4269. [PMID: 37374452 PMCID: PMC10304312 DOI: 10.3390/ma16124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The long-range crystallographic order and anisotropy in β-(AlxGa1-x)2O3 (x = 0.0, 0.06, 0.11, 0.17, 0.26) crystals, prepared by optical floating zone method with different Al composition, is systematically studied by spatial correlation model and using an angle-resolved polarized Raman spectroscopy. Alloying with aluminum is seen as causing Raman peaks to blue shift while their full widths at half maxima broadened. As x increased, the correlation length (CL) of the Raman modes decreased. By changing x, the CL is more strongly affected for low-frequency phonons than the modes in the high-frequency region. For each Raman mode, the CL is decreased by increasing temperature. The results of angle-resolved polarized Raman spectroscopy have revealed that the intensities of β-(AlxGa1-x)2O3 peaks are highly polarization dependent, with significant effects on the anisotropy with alloying. As the Al composition increased, the anisotropy of Raman tensor elements was enhanced for the two strongest phonon modes in the low-frequency range, while the anisotropy of the sharpest Raman phonon modes in the high-frequency region decreased. Our comprehensive study has provided meaningful results for comprehending the long-range orderliness and anisotropy in technologically important β-(AlxGa1-x)2O3 crystals.
Collapse
Affiliation(s)
- Liuyan Li
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Lingyu Wan
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Changtai Xia
- Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qinglin Sai
- Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Devki N. Talwar
- Department of Physics, University of North Florida, Jacksonville, FL 32224, USA
| | - Zhe Chuan Feng
- Department of Electrical & Computer Engineering, Southern Polytechnic College of Engineering and Engineering Technology, Kennesaw State University Marietta, Marietta, GA 30060, USA
| | - Haoyue Liu
- Hangzhou Institute of Optics and Fine Mechanics, Hangzhou 311421, China
| | - Jiang Jiang
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Ping Li
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| |
Collapse
|
6
|
Rosati R, Paradisanos I, Huang L, Gan Z, George A, Watanabe K, Taniguchi T, Lombez L, Renucci P, Turchanin A, Urbaszek B, Malic E. Interface engineering of charge-transfer excitons in 2D lateral heterostructures. Nat Commun 2023; 14:2438. [PMID: 37117167 PMCID: PMC10147613 DOI: 10.1038/s41467-023-37889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 04/30/2023] Open
Abstract
The existence of bound charge transfer (CT) excitons at the interface of monolayer lateral heterojunctions has been debated in literature, but contrary to the case of interlayer excitons in vertical heterostructure their observation still has to be confirmed. Here, we present a microscopic study investigating signatures of bound CT excitons in photoluminescence spectra at the interface of hBN-encapsulated lateral MoSe2-WSe2 heterostructures. Based on a fully microscopic and material-specific theory, we reveal the many-particle processes behind the formation of CT excitons and how they can be tuned via interface- and dielectric engineering. For junction widths smaller than the Coulomb-induced Bohr radius we predict the appearance of a low-energy CT exciton. The theoretical prediction is compared with experimental low-temperature photoluminescence measurements showing emission in the bound CT excitons energy range. We show that for hBN-encapsulated heterostructures, CT excitons exhibit small binding energies of just a few tens meV and at the same time large dipole moments, making them promising materials for optoelectronic applications (benefiting from an efficient exciton dissociation and fast dipole-driven exciton propagation). Our joint theory-experiment study presents a significant step towards a microscopic understanding of optical properties of technologically promising 2D lateral heterostructures.
Collapse
Affiliation(s)
- Roberto Rosati
- Department of Physics, Philipps-Universität Marburg, Renthof 7, D-35032, Marburg, Germany.
| | - Ioannis Paradisanos
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ziyang Gan
- Friedrich Schiller University Jena, Institute of Physical Chemistry, 07743, Jena, Germany
- Abbe Centre of Photonics, 07745, Jena, Germany
| | - Antony George
- Friedrich Schiller University Jena, Institute of Physical Chemistry, 07743, Jena, Germany
- Abbe Centre of Photonics, 07745, Jena, Germany
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Laurent Lombez
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
| | - Pierre Renucci
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
| | - Andrey Turchanin
- Friedrich Schiller University Jena, Institute of Physical Chemistry, 07743, Jena, Germany
- Abbe Centre of Photonics, 07745, Jena, Germany
| | - Bernhard Urbaszek
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, Renthof 7, D-35032, Marburg, Germany
| |
Collapse
|
7
|
Nie X, Wu X, Wang Y, Ban S, Lei Z, Yi J, Liu Y, Liu Y. Surface acoustic wave induced phenomena in two-dimensional materials. NANOSCALE HORIZONS 2023; 8:158-175. [PMID: 36448884 DOI: 10.1039/d2nh00458e] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface acoustic wave (SAW)-matter interaction provides a fascinating key for inducing and manipulating novel phenomena and functionalities in two-dimensional (2D) materials. The dynamic strain field and piezo-electric field associated with propagating SAWs determine the coherent manipulation and transduction between 2D excitons and phonons. Over the past decade, many intriguing acoustic-induced effects, including the acousto-electric effect, acousto-galvanic effect, acoustic Stark effect, acoustic Hall effect and acoustic exciton transport, have been reported experimentally. However, many more phenomena, such as the valley acousto-electric effect, valley acousto-electric Hall effect and acoustic spin Hall effect, were only theoretically proposed, the experimental verification of which are yet to be achieved. In this minireview, we attempt to overview the recent breakthrough of SAW-induced phenomena covering acoustic charge transport, acoustic exciton transport and modulation, and coherent acoustic phonons. Perspectives on the opportunities of the proposed SAW-induced phenomena, as well as open experimental challenges, are also discussed, attempting to offer some guidelines for experimentalists and theorists to explore the desired exotic properties and boost practical applications of 2D materials.
Collapse
Affiliation(s)
- Xuchen Nie
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Xiaoyue Wu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Yang Wang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Siyuan Ban
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Ying Liu
- College of Jincheng, Nanjing University of Aeronautics and Astronautics, Nanjing 211156, China.
| | - Yanpeng Liu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
8
|
Tanaka T, Kurihara M, Kuwahara M, Kuwahara S. Copper sulfide nanoribbon growth triggered by carbon nanotube aggregation via dialysis. RSC Adv 2022; 12:31363-31368. [PMID: 36349000 PMCID: PMC9627581 DOI: 10.1039/d2ra04832a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/27/2022] [Indexed: 01/25/2023] Open
Abstract
The growth of copper sulfide (Cu x S) nanoribbons, a class of Cu x S nanomaterials, was achieved by the aggregation of single-walled carbon nanotubes (SWCNTs) via a dialysis process. The obtained nanoribbon structure and its constituent elements on a film of SWCNT aggregates were confirmed by transmission electron microscopy (TEM) and scanning transmittance electron microscopy-energy dispersive X-ray spectroscopy. The subsequently obtained TEM images and Raman spectra revealed that nucleus synthesis and subsequent growth of Cu x S nanoribbons occurred during the aggregation of SWCNTs. The growth procedure described in this work provides an approach for the wet chemical synthesis of metal sulfide nanomaterials.
Collapse
Affiliation(s)
- Tomomi Tanaka
- Department of Chemistry, Faculty of Science, Toho University2-2-1 MiyamaFunabashi274-8510ChibaJapan
| | - Misaki Kurihara
- Department of Chemistry, Faculty of Science, Toho University2-2-1 MiyamaFunabashi274-8510ChibaJapan
| | - Makoto Kuwahara
- Graduate School of Engineering and Institute of Materials and Systems for Sustainability, Nagoya UniversityChikusaNagoya 464-8603Japan
| | - Shota Kuwahara
- Department of Chemistry, Faculty of Science, Toho University2-2-1 MiyamaFunabashi274-8510ChibaJapan
| |
Collapse
|
9
|
Zou H, Wang X, Zhou K, Li Y, Fu Y, Zhang L. Electronic property modulation in two-dimensional lateral superlattices of monolayer transition metal dichalcogenides. NANOSCALE 2022; 14:10439-10448. [PMID: 35816154 DOI: 10.1039/d2nr02189g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fabricating lateral heterostructures (HSs) and superlattices (SLs) provides a unique degree of freedom for modulating the physical properties of two-dimensional (2D) materials by varying the chemical component, geometric size and interface structure in the ultra-thin atomic thickness limit. While a variety of 2D lateral HSs/SLs have been synthesized, especially for transition metal dichalcogenides (TMDs), how such structures affect quantitatively the physical properties of 2D materials has not yet been established. We herein explore electronic property modulation in 2D lateral SLs of monolayer TMDs through first-principles high-throughput calculations. The dependence of the electronic structure, bandgap, carrier effective masses, charge density overlap on chemical components, interface type, and sub-lattice size of lateral TMD-SLs are investigated. We find that by comparison with their random alloy counterparts, the lateral TMD-SLs exhibit generally type-II band alignment, a wider range of bandgap tunability, larger carrier effective masses, and stronger electron-hole charge separation tendency. The bandgap variation with a sub-lattice size shows larger bowing parameters for the SLs with heterogeneous anions, by comparison with the homogeneous anion cases. A similar behavior is observed for the SLs with an armchair-type interface, by comparison with the zigzag-type interface cases. Further analyses reveal that the underlying physical mechanism can be attributed to the synergistic interplay among the band offset of sub-lattices, quantum confinement effect, and existing internal strain.
Collapse
Affiliation(s)
- Hongshuai Zou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Xinjiang Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Kun Zhou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yawen Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yuhao Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Lijun Zhang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|