1
|
Xu M, Kim EJ, Lee YJ, Lee H, Jung K, Choi J, Kim SH, Kim Y, Yun H, Kim BJ. Icosahedral supracrystal assembly from polymer-grafted nanoparticles via interplay of interfacial energy and confinement effect. SCIENCE ADVANCES 2024; 10:eado0745. [PMID: 38875331 PMCID: PMC11177942 DOI: 10.1126/sciadv.ado0745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
Self-assembly of nanoparticles (NPs) in drying emulsion droplets paves the way for intricate three-dimensional (3D) superstructures, given the myriad of control parameters for fine-tuning assembly conditions. With their substantial energetic dynamics that are acutely responsive to emulsion confinements, polymeric ligands incorporated into a system can enrich its structural diversity. Here, we demonstrate the assembly of soft polymer-grafted NPs into Mackay icosahedrons beyond spherical body-centered cubic (BCC) packing structures commonly observed for these soft spheres. This behavior is governed by the free energy minimization within emulsions through the interplay of the oil-water interfacial energy and confinement effect as demonstrated by the experimental observations of structural transitions between icosahedrons and BCC crystals and by corresponding free energy calculations. The anisotropic surface of the icosahedral supracrystals provides the capability of guiding the position of a secondary constituent, creating unique hybrid patchy icosahedrons with the potential to develop into multifunctional 3D clusters that combine the benefits of both polymers and conventional colloids.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Ji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Jun Lee
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Hyunsoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyunghyun Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeyoung Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hongseok Yun
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Xue Y, Song Q, Liu Y, Smith D, Li W, Zhong M. Hierarchically Structured Nanocomposites via Mixed-Graft Block Copolymer Templating: Achieving Controlled Nanostructure and Functionality. J Am Chem Soc 2024; 146:567-577. [PMID: 38117946 DOI: 10.1021/jacs.3c10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Integrating inorganic and polymerized organic functionalities to create composite materials presents an efficient strategy for the discovery and fabrication of multifunctional materials. The characteristics of these composites go beyond a simple sum of individual component properties; they are profoundly influenced by the spatial arrangement of these components and the resulting homo-/hetero-interactions. In this work, we develop a facile and highly adaptable approach for crafting nanostructured polymer-inorganic composites, leveraging hierarchically assembling mixed-graft block copolymers (mGBCPs) as templates. These mGBCPs, composed of diverse polymeric side chains that are covalently tethered with a defined sequence to a linear backbone polymer, self-assemble into ordered hierarchical structures with independently tuned nano- and mesoscale lattice features. Through the coassembly of mGBCPs with diversely sized inorganic fillers such as metal ions (ca. 0.1 nm), metal oxide clusters (0.5-2 nm), and metallic nanoparticles (>2 nm), we create three-dimensional filler arrays with controlled interfiller separation and arrangement. Multiple types of inorganic fillers are simultaneously integrated into the mGBCP matrix by introducing orthogonal interactions between distinct fillers and mGBCP side chains. This results in nanocomposites where each type of filler is selectively segregated into specific nanodomains with matrix-defined orientations. The developed coassembly strategy offers a versatile and scalable pathway for hierarchically structured nanocomposites, unlocking new possibilities for advanced materials in the fields of optoelectronics, sensing, and catalysis.
Collapse
Affiliation(s)
- Yazhen Xue
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Qingliang Song
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuchu Liu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Daniel Smith
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
3
|
Mao R, Minevich B, McKeen D, Chen Q, Lu F, Gang O, Mittal J. Regulating phase behavior of nanoparticle assemblies through engineering of DNA-mediated isotropic interactions. Proc Natl Acad Sci U S A 2023; 120:e2302037120. [PMID: 38109548 PMCID: PMC10756293 DOI: 10.1073/pnas.2302037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
Self-assembly of isotropically interacting particles into desired crystal structures could allow for creating designed functional materials via simple synthetic means. However, the ability to use isotropic particles to assemble different crystal types remains challenging, especially for generating low-coordinated crystal structures. Here, we demonstrate that isotropic pairwise interparticle interactions can be rationally tuned through the design of DNA shells in a range that allows transition from common, high-coordinated FCC-CuAu and BCC-CsCl lattices, to more exotic symmetries for spherical particles such as the SC-NaCl lattice and to low-coordinated crystal structures (i.e., cubic diamond, open honeycomb). The combination of computational and experimental approaches reveals such a design strategy using DNA-functionalized nanoparticles and successfully demonstrates the realization of BCC-CsCl, SC-NaCl, and a weakly ordered cubic diamond phase. The study reveals the phase behavior of isotropic nanoparticles for DNA-shell tunable interaction, which, due to the ease of synthesis is promising for the practical realization of non-close-packed lattices.
Collapse
Affiliation(s)
- Runfang Mao
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN55455
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York, NY10027
| | - Daniel McKeen
- Department of Chemical Engineering, Columbia University, New York, NY10027
| | - Qizan Chen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
| | - Fang Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY11973
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, NY10027
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY11973
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY10027
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
- Department of Chemistry, Texas A&M University, College Station, TX77843
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX77843
| |
Collapse
|
4
|
Sun YS, Jian YQ, Yang ST, Chen CY, Lin JM. Morphologies of Surface Perforations and Parallel Cylinders Coexisting in Terraced Films of Block Copolymer/Homopolymer Blends with Oxygen Plasma Etching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16284-16293. [PMID: 37934122 DOI: 10.1021/acs.langmuir.3c01784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
This study has demonstrated how oxygen plasma etching carves surface structures for thin films of polystyrene-block-poly(methyl methacrylate)/homopolystyrene blends. By tuning the weight-fraction ratio, blend films form perforations and cylinders on the SiOx/Si substrate. Since perforations exist only on the free surface and substrate interface, short exposure to oxygen plasma to quickly etch the PMMA component produces distorted hexagonal arrays of nanodots on the free surface. The interior of the blend films forms polygrain micro-structures composed of parallel cylinders with an in-plane random orientation. Oxygen plasma etching imposed on the fractured surfaces results in five morphologies: (i) distorted hexagonal arrays of nanoholes, (ii) layer-by-layer stacks, (iii) zigzag-like arrays, (iv) intertwined rectangular arrays of nanodots and nanoholes, and (v) intertwined parallelogram arrays of nanodots and nanoholes. The morphologies suggest synergic effects of grain orientations, stresses, spatial confinement, local segregation of chains, and etching kinetics on the terraced films with oxygen plasma etching.
Collapse
Affiliation(s)
- Ya-Sen Sun
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Qing Jian
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shin-Tung Yang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Yu Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jhih-Min Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
5
|
Hartmann F, Bitsch M, Niebuur BJ, Koch M, Kraus T, Dietz C, Stark RW, Everett CR, Müller-Buschbaum P, Janka O, Gallei M. Self-Assembly of Polymer-Modified FePt Magnetic Nanoparticles and Block Copolymers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5503. [PMID: 37629794 PMCID: PMC10455748 DOI: 10.3390/ma16165503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
The fabrication of nanocomposites containing magnetic nanoparticles is gaining interest as a model for application in small electronic devices. The self-assembly of block copolymers (BCPs) makes these materials ideal for use as a soft matrix to support the structural ordering of the nanoparticles. In this work, a high-molecular-weight polystyrene-b-poly(methyl methacrylate) block copolymer (PS-b-PMMA) was synthesized through anionic polymerization. The influence of the addition of different ratios of PMMA-coated FePt nanoparticles (NPs) on the self-assembled morphology was investigated using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The self-assembly of the NPs inside the PMMA phase at low particle concentrations was analyzed statistically, and the negative effect of higher particle ratios on the lamellar BCP morphology became visible. The placement of the NPs inside the PMMA phase was also compared to theoretical descriptions. The magnetic addressability of the FePt nanoparticles inside the nanocomposite films was finally analyzed using bimodal magnetic force microscopy and proved the magnetic nature of the nanoparticles inside the microphase-separated BCP films.
Collapse
Affiliation(s)
- Frank Hartmann
- Polymer Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany; (F.H.); (M.B.)
| | - Martin Bitsch
- Polymer Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany; (F.H.); (M.B.)
| | - Bart-Jan Niebuur
- INM—Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; (B.-J.N.); (M.K.); (T.K.)
| | - Marcus Koch
- INM—Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; (B.-J.N.); (M.K.); (T.K.)
| | - Tobias Kraus
- INM—Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; (B.-J.N.); (M.K.); (T.K.)
- Colloid and Interface Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| | - Christian Dietz
- Physics of Surfaces, Institute of Materials Science, Technical University of Darmstadt, Peter-Grünberg-Straße 2, 64287 Darmstadt, Germany; (C.D.); (R.W.S.)
| | - Robert W. Stark
- Physics of Surfaces, Institute of Materials Science, Technical University of Darmstadt, Peter-Grünberg-Straße 2, 64287 Darmstadt, Germany; (C.D.); (R.W.S.)
| | - Christopher R. Everett
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany; (C.R.E.); (P.M.-B.)
| | - Peter Müller-Buschbaum
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany; (C.R.E.); (P.M.-B.)
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Oliver Janka
- Inorganic Solid-State Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany;
| | - Markus Gallei
- Polymer Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany; (F.H.); (M.B.)
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|