1
|
Jiang M, Liao L, Zhang J, Wei X, Yu CY, Wei H. Peptide core spherical nucleic acids circumvent tumor immunosuppression via supplementing methionine for enhanced photodynamic/gene immune/therapy of hepatocellular carcinoma. J Colloid Interface Sci 2024; 682:653-670. [PMID: 39642551 DOI: 10.1016/j.jcis.2024.11.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Spherical nucleic acids (SNAs) with functional peptide cores are an emerging nanoplatform for synergistic cancer therapy but have been rarely reported. We construct herein the first SNA nanoplatform based on a biodegradable binary peptide backbone of methionine (Met) and cysteine (Cys) for codelivery of a photosensitizer, Chlorin e6 (Ce6) and human liver-specific miR122 for synergistic photodynamic-gene therapy of hepatic cell carcinoma (HCC). Met supplementation by the peptide core improves the infiltration of T cells and enhances the effector function of T cells for turning a "cold" tumor into a "hot" one. The resulting SNA(+) shows the most significant inhibitory effect in a Hepa1-6 HCC primary/distal tumor model, with tumor growth inhibition (TGI) values of 98.5 ± 0.5 % and 99.1 ± 0.4 % for the primary and distant tumors, respectively. This SNA nanoplatform achieves superior high TGI values reported thus far to our knowledge with almost complete eradication for both tumors due to the simultaneous adaptive and innate immunity activation via photodynamic therapy (PDT) induced immunogenic cell death (ICD) and Met supplementation-promoted adaptive immunity, and miR122-enhanced innate immunity. Overall, this study not only develops a reliable synthetic strategy toward peptide-backboned multifunctional SNA nanoplatform, but also reports the modulation of amino acid metabolism for enhanced innate immunity for highly efficient HCC immunotherapy.
Collapse
Affiliation(s)
- Mingchao Jiang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Luanfeng Liao
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Jinyan Zhang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Xiaojie Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China; Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Hua Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Cui Z, Wang Y, Zhang L, Qi H. Zwitterionic Peptides: From Mechanism, Design Strategies to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56497-56518. [PMID: 39393043 DOI: 10.1021/acsami.4c08891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Zwitterionic peptides, as a type of peptide composed of charged residues, are electrically neutral, which combine the advantages of zwitterionic materials and biological peptides, exhibiting hydrophilicity and programmable properties. As attractive candidates for resisting nonspecific adsorption of biomacromolecules and microorganisms, zwitterionic peptides have been applied in materials science, biomedicine, and biochemistry over the past decade. In this review, the development of zwitterionic peptides has been systematically outlined and analyzed, including their mechanisms, structure-function relationships, and design strategies. Furthermore, this review emphasizes and discusses their recent applications for developing functional coatings, biosensors, drug delivery systems, and engineering proteins. Finally, future research perspectives and challenges of zwitterionic peptides are also prospected and discussed. This review is intended to provide clarity and insight into the design and applications of zwitterionic peptides.
Collapse
Affiliation(s)
- Zhongxin Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Yuefeng Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Safarkhani M, Ahmadi S, Ipakchi H, Saeb MR, Makvandi P, Ebrahimi Warkiani M, Rabiee N, Huh Y. Advancements in Aptamer-Driven DNA Nanostructures for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401617. [PMID: 38713753 PMCID: PMC11234471 DOI: 10.1002/advs.202401617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Indexed: 05/09/2024]
Abstract
DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a "key-lock" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.
Collapse
Affiliation(s)
- Moein Safarkhani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Sepideh Ahmadi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Hossein Ipakchi
- Department of Chemical Engineering, McMaster University, Hamilton, L8S 4L8, Canada
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk, 80-416, Poland
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000 Quzhou, Zhejiang, China
- Centre of Research Impact and Outreach, Chitkara University, Rajpura, Punjab, 140417, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - YunSuk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| |
Collapse
|
4
|
Jiang MC, Fang ZL, Zhang JY, Ma W, Liao LF, Yu CY, Wei H. A fully biodegradable spherical nucleic acid nanoplatform for self-codelivery of doxorubicin and miR122 for innate and adaptive immunity activation. Acta Biomater 2024; 180:407-422. [PMID: 38614414 DOI: 10.1016/j.actbio.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Facile construction of a fully biodegradable spherical nucleic acid (SNA) nanoplatform is highly desirable for clinical translations but remains rarely explored. We developed herein the first polycarbonate-based biodegradable SNA nanoplatform for self-codelivery of a chemotherapeutic drug, doxorubicin (DOX), and a human liver-specific miR122 for synergistic chemo-gene therapy of hepatocellular carcinoma (HCC). Ring-opening polymerization (ROP) of a carbonate monomer leads to a well-defined polycarbonate backbone for subsequent DOX conjugation to the pendant side chains via acidic pH-cleavage Schiff base links and miR122 incorporation to the chain termini via click coupling, affording an amphiphilic polycarbonate-DOX-miR122 conjugate, PBis-Mpa30-DOX-miR122 that can self-assemble into stabilized SNA. Besides the desired biodegradability, another notable merit of this nanoplatform is the use of miR122 not only for gene therapy but also for enhanced innate immune response. Together with the ICD-triggering effect of DOX, PBis-Mpa30-DOX-miR122 SNA-mediated DOX and miR122 codelivery leads to synergistic immunogenicity enhancement, resulting in tumor growth inhibition value (TGI) of 98.1 % significantly higher than those of the groups treated with only drug or gene in a Hepa1-6-tumor-bearing mice model. Overall, this study develops a useful strategy toward biodegradable SNA construction, and presents a drug and gene-based self-codelivery SNA with synergistic immunogenicity enhancement for efficient HCC therapy. STATEMENT OF SIGNIFICANCE: Facile construction of a fully biodegradable SNA nanoplatform is useful for in vivo applications but remains relatively unexplored likely due to the synthetic challenge. We report herein construction of a polycarbonate-based SNA nanoplatform for co-delivering a chemotherapeutic drug, DOX, and a human liver-specific miR-122 for synergistic HCC treatment. In addition to the desired biodegradability properties, this SNA nanoplatform integrates DOX-triggered ICD and miR-122-enhanced innate immunity for simultaneously activating adaptive and innate immunities, which leads to potent antitumor efficiency with a TGI value of 98.1 % in a Hepa1-6-tumor-bearing mice model.
Collapse
Affiliation(s)
- Ming-Chao Jiang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhou-Long Fang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jin-Yan Zhang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Wei Ma
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Luan-Feng Liao
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Affiliated Hospital of Hunan Academy of Chinese Medicine Hunan, Academy of Chinese Medicine, Changsha 410013, China; Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
6
|
Wang W, Wang B, Li Q, Tian R, Lu X, Peng Y, Sun J, Bai J, Gao Z, Sun X. Ultrasensitive Detection Strategy of Norovirus Based on a Dual Enhancement Strategy: CRISPR-Responsive Self-Assembled SNA and Isothermal Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4415-4425. [PMID: 38355417 DOI: 10.1021/acs.jafc.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Spherical nucleic acids (SNAs) have been used to construct various nanobiosensors with gold nanoparticles (AuNPs) as nuclei. The SNAs play a critical role in biosensing due to their various physical and chemical properties, programmability, and specificity recognition ability. In this study, CRISPR-responsive self-assembled spherical nucleic acid (CRISPR-rsSNA) detection probes were constructed by conjugating fluorescein-labeled probes to the surface of AuNPs to improve the sensing performance. Also, the mechanism of ssDNA and the role of different fluorescent groups in the self-assembly process of CRISPR-rsSNA were explored. Then, CRISPR-rsSNA and reverse transcription-recombinase polymerase amplification (RT-RPA) were combined to develop an ultrasensitive fluorescence-detection strategy for norovirus. In the presence of the virus, the target RNA sequence of the virus was transformed and amplified by RT-RPA. The resulting dsDNA activated the trans-cleavage activity of CRISPR cas12a, resulting in disintegrating the outer nucleic acid structure of the CRISPR-rsSNA at a diffusible rate, which released reporter molecules. Norovirus was quantitated by fluorescence detection. This strategy facilitated the detection of the norovirus at the attomolar level. An RT-RPA kit for norovirus detected would be developed based on this method. The proposed method would be used for the detection of different viruses just by changing the target RNA and crRNA of the CRISPR cas12a system which provided a foundation for high-throughput detection of various substances.
Collapse
Affiliation(s)
- Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Botao Wang
- School of Instrument Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Qiaofeng Li
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Run Tian
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Xin Lu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
7
|
Shen H, Cui G, Liang H, Yang H, Chen M, Xu ZL, Liu W, Liu Y. DNA Nanomachine-Driven Heterogeneous Quadratic Amplification for Sensitive and Programmable miRNA Profiling. Anal Chem 2023; 95:15769-15777. [PMID: 37734028 DOI: 10.1021/acs.analchem.3c03306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Inspired by the molecular crowding effect in biological systems, a novel heterogeneous quadratic amplification molecular circuit (HEQAC) was developed for sensitive bimodal miRNA profiling (HEQAC-BMP) by combining an MNAzyme-based DNA nanomachine with an entropy-driven catalytic hairpin assembly (E-CHA) autocatalytic circuit. Utilizing ferromagnetic nanomaterials as the substrate for DNA nanomachines, a biomimetic heterogeneous interface was established; thus, a localized molecular crowding system was created that can elevate the local reaction concentration and accelerate the molecular recognition process for a significant threshold signal. Simultaneously, the threshold signal undergoes further amplification by E-CHA and is transformed into a chemical signal, enabling a colorimetric-fluorescence bimodal signal readout. The HEQAC-BMP enables miRNA detection from 10 aM to 10 nM with detection limits of 3.7 aM (colorimetry) and 4.8 aM (fluorometry), respectively. Moreover, the design principle and strategy of HEQAC-BMP can be customized to address other critical viruses or diseases with life-threatening and socioeconomic impacts, enhancing healthcare outcomes for individuals.
Collapse
Affiliation(s)
- Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guosheng Cui
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hui Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Mengting Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Wei H, Li F, Xue T, Wang H, Ju E, Li M, Tao Y. MicroRNA-122-functionalized DNA tetrahedron stimulate hepatic differentiation of human mesenchymal stem cells for acute liver failure therapy. Bioact Mater 2023; 28:50-60. [PMID: 37214257 PMCID: PMC10199164 DOI: 10.1016/j.bioactmat.2023.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
As the most abundant liver-specific microRNA, microRNA-122 (miR122) played a crucial role in the differentiation of stem cells into hepatocytes. However, highly efficient miR122 delivery still confronts challenges including poor cellular uptake and easy biodegradation. Herein, we for the first time demonstrated that the tetrahedral DNA (TDN) nanoplatform had great potential in inducing the differentiation of human mesenchymal stem cells (hMSCs) into functional hepatocyte-like cells (HLCs) by transferring the liver-specific miR122 to hMSCs efficiently without any extrinsic factors. As compared with miR122, miR122-functionalized TDN (TDN-miR122) could significantly up-regulate the protein expression levels of mature hepatocyte markers and hepatocyte-specific marker genes in hMSCs, indicating that TDN-miR122 could particularly activate the hepatocyte-specific properties of hMSCs for developing cell-based therapies in vitro. The transcriptomic analysis further indicated the potential mechanism that TDN-miR122 assisted hMSCs differentiated into functional HLCs. The TDN-miR122-hMSCs exhibited hepatic cell morphology phenotype, significantly up-regulated specific hepatocyte genes and hepatic biofunctions in comparison with the undifferentiated MSCs. Preclinical in vivo transplantation appeared that TDN-miR122-hMSCs in combination with or without TDN could efficiently rescue acute liver failure injury through hepatocyte function supplement, anti-apoptosis, cellular proliferation promotion, and anti-inflammatory. Collectively, our findings may provide a new and facile approach for hepatic differentiation of hMSCs for acute liver failure therapy. Further large animal model explorations are needed to study their potential in clinical translation in the future.
Collapse
Affiliation(s)
- Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
9
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
10
|
Huang L, Mao X, Li J, Li Q, Shen J, Liu M, Fan C, Tian Y. Nanoparticle Spikes Enhance Cellular Uptake via Regulating Myosin IIA Recruitment. ACS NANO 2023; 17:9155-9166. [PMID: 37171255 DOI: 10.1021/acsnano.2c12660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Spike-like nanostructures are omnipresent in natural and artificial systems. Although biorecognition of nanostructures to cellular receptors has been indicated as the primary factor for virus infection pathways, how the spiky morphology of DNA-modified nanoparticles affects their cellular uptake and intracellular fate remains to be explored. Here, we design dually emissive gold nanoparticles with varied spikiness (from 0 to 2) to probe the interactions of spiky nanoparticles with cells. We discovered that nanospikes at the nanoparticle regulated myosin IIA recruitment at the cell membrane during cellular uptake, thereby enhancing cellular uptake efficiency, as revealed by dual-modality (plasmonic and fluorescence) imaging. Furthermore, the spiky nanoparticles also exhibited facilitated endocytosis dynamics, as revealed by real-time dark-field microscopy (DFM) imaging and colorimetry-based classification algorithms. These findings highlight the crucial role of the spiky morphology in regulating the intracellular fate of nanoparticles, which may shed light on engineering theranostic nanocarriers.
Collapse
Affiliation(s)
- Lulu Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
11
|
Zhao C, Wen S, Pan J, Wang K, Ji Y, Huang D, Zhao B, Chen W. Robust Construction of Supersmall Zwitterionic Micelles Based on Hyperbranched Polycarbonates Mediates High Tumor Accumulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2725-2736. [PMID: 36598373 DOI: 10.1021/acsami.2c20056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite the numerous advantages of nanomedicines, their therapeutic efficacy is hampered by biological barriers, including fast in vivo clearance, poor tumor accumulation, inefficient penetration, and cellular uptake. Herein, cross-linked supersmall micelles based on zwitterionic hyperbranched polycarbonates can overcome these challenges for efficiently targeted drug delivery. Biodegradable acryloyl/zwitterion-functionalized hyperbranched polycarbonates are synthesized by a one-pot sequential reaction of Michael-type addition and ring-opening polymerization, followed by controlled modification with carboxybetaine thiol. Cross-linked supersmall zwitterionic micelles (X-CBMs) are readily prepared by straightforward self-assembly and UV cross-linking. X-CBMs exhibit prolonged blood circulation because of their cross-linked structure and zwitterion decoration, which resist protein corona formation and facilitate escaping RES recognition. Combined with the advantage of supersmall size (7.0 nm), X-CBMs mediate high tumor accumulation and deep penetration, which significantly enhance the targeted antitumor outcome against the 4T1 tumor model by administration of the paclitaxel (PTX) formulation (X-CBM@PTX).
Collapse
Affiliation(s)
- Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Suchen Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Jingfang Pan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Yicheng Ji
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| |
Collapse
|