1
|
Yon M, Lonetti B, Gineste S, Perez J, Goudouneche D, Weingarten L, Marty JD, Ciuculescu-Pradines D. Easy reversible clustering of gold nanoparticles via pH-Induced assembly of PVP-b-PAA copolymer. J Colloid Interface Sci 2025; 679:9-19. [PMID: 39432954 DOI: 10.1016/j.jcis.2024.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/29/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
The growing demand of novel hybrid organic/inorganic systems with exciting properties has contributed to an increasing need for simplifying production strategies. Here, we report a simple method to obtain controlled three-dimensional hybrid architectures, in particular hybrid supracolloids (hSC), formed by gold nanoparticles and a double hydrophilic block copolymer, specifically the poly(acrylic acid)-block-poly(N-vinyl-2-pyrrolidone) (PAA-b-PVP), directly in aqueous medium. The ubiquitous pH-sensitive poly(acrylic acid) (PAA) block initiates the assembly through pH changes, while the poly(N-vinyl-2-pyrrolidone) block assures the close affinity with the AuNPs. We demonstrate that the formation of hybrid supracolloids (hSC) is the result of the synergetic behavior of the two specific polymeric blocks. Additionally, the entire process shows spontaneous and fast switchability. The nanostructured copolymer behaves like a highly swollen hydrogel and displays a disordered internal structure. The driving force for the association of the copolymer chains is induced by the synergetic effects of the decrease in solubility of the poly(acrylic acid) block and the formation of inter and intra chains hydrogen bonds. These were demonstrated by using small angle X-ray scattering (SAXS), quartz crystal microbalance with dissipation monitoring (QCM-D) and scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (STEM-EDX). In turn, the AuNPs are randomly spread all over the polymeric matrix, as demonstrated by field emission gun - scanning electron microscopy (FEG-SEM). A correlation analysis reveals the hSC density depends mostly on the initial concentration of AuNPs. These results can inspire the fabrication of more complex structures with multicomponent composition.
Collapse
Affiliation(s)
- Marjorie Yon
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Barbara Lonetti
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Stéphane Gineste
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Javier Perez
- Synchrotron Soleil, Ligne SWING, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Dominique Goudouneche
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine, ute de Narbonne, 31062 Toulouse, France
| | - Laurent Weingarten
- Centre de MicroCaractérisation Raimond Castaing, ECA, 3 rue Caroline Aigle, 31400 Toulouse, France
| | - Jean-Daniel Marty
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France.
| | - Diana Ciuculescu-Pradines
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France.
| |
Collapse
|
2
|
Shi Y, Liu Q, Pan Q, Yang D, Lan Y, Wang T. Adsorption of Cu Nanoparticles on Polystyrene-Based Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13134-13143. [PMID: 38868999 DOI: 10.1021/acs.langmuir.4c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Nanoparticle composite microspheres are a versatile material with unique features and wide-ranging applications, including catalysis, biological medicine, and electronic devices. The adsorption behavior of nanoparticles on the surface of microspheres plays a crucial role in determining the further application potentials. The understanding of nanoparticle adsorption behavior on microsphere surfaces is essential for guiding future applications in nanoparticle composite microspheres. In this work, the adsorption behavior of unstable copper nanoparticles (Cu NPs) on polystyrene-based (PS-based) microspheres was investigated. The influence of PS-based microspheres' surface properties and the oxidation degree of Cu NPs were determined. The adsorption mechanism of Cu NPs on PS-based microspheres was analyzed. Furthermore, the amounts and rates of adsorption were examined. It was found that the Cu NPs can be rapidly and firmly adsorbed on the surface of carboxyl-modified polystyrene microspheres. Additionally, precise control over the distribution of Cu NPs on the surface of PS-based microspheres can be achieved by manipulating the solvent's polarity.
Collapse
Affiliation(s)
- Yuling Shi
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qing Liu
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qianqian Pan
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Danlong Yang
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yangeng Lan
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tao Wang
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Liu X, Zhang D, Yu P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 2023; 311:120718. [PMID: 37028867 DOI: 10.1016/j.carbpol.2023.120718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liangyu Bai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoyi Tang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St.George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China.
| |
Collapse
|