1
|
Adaikalam K, Vikraman D, Karuppasamy K, Kim HS. Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1560. [PMID: 39404287 PMCID: PMC11477753 DOI: 10.3390/nano14191560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Climatic changes are reaching alarming levels globally, seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality, transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions, making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons, hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water, with solar hydrogen production-using solar light to split water-standing out as a cost-effective and environmentally friendly approach. However, the widespread adoption of hydrogen energy is challenged by transportation and storage issues, as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution, providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods, as it uses self-generated power. Similarly, solid storage of hydrogen is also attractive in many ways, including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially, but once the materials and methods are established, they will become more attractive considering rising fuel prices, depletion of fossil fuel resources, and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy, producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions, solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient, safe, and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques, this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage, focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between -40 and 60 °C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage, and discusses current challenges in hydrogen generation and storage. This includes material selection, and the structural and chemical modifications needed for optimal performance and potential applications.
Collapse
Affiliation(s)
- Kathalingam Adaikalam
- Millimeter-Wave Innovation Technology Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea; (D.V.); (K.K.)
| | - K. Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea; (D.V.); (K.K.)
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea; (D.V.); (K.K.)
| |
Collapse
|
2
|
Wang F, Wang S, Liu Y, Hou T, Wu Z, Qian J, Zhao Z, Wang L, Jia C, Ma S. Improved Electrical Output Performance of Cellulose-Based Triboelectric Nanogenerators Enabled by Negative Triboelectric Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308195. [PMID: 38072819 DOI: 10.1002/smll.202308195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/08/2023] [Indexed: 05/12/2024]
Abstract
Cellulose-based triboelectric nanogenerators (TENGs) have attracted widespread attention due to the low cost and environmentally friendly characteristics of cellulose. However, achieving high electrical energy output from these generators still presents significant challenges. Here, cellulose is dissolved-regenerated to form a composite aerogel with high specific surface area, in which cellulose-based composites with excellent negative triboelectric properties are developed by coupling the rich 3D network structure of the regenerated cellulose aerogel, modified barium titanate, and poly(vinylidene fluoride). The TENGs assembled from the composite materials exhibit an output voltage of 1040 V and a current of 1.165 mA at an external force of 8 N and a frequency of 4 Hz, outperforming all cellulose-based negative triboelectric materials. In addition, the nanogenerators have a stable electrical energy output capacity, with no significant property degradation in 100 000 contact-separation tests. The excellent electrical output property of the composite materials enables them to harvest energy from human movement and waterdrops, demonstrating their great application prospects in wearable devices, energy harvesting devices, self-powered sensors, and other fields.
Collapse
Affiliation(s)
- Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Suyang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yifan Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tianmeng Hou
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhen Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhicheng Zhao
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shufeng Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Wang Y, Gao Q, Liu W, Bao C, Li H, Wang Y, Wang ZL, Cheng T. Wind Aggregation Enhanced Triboelectric-Electromagnetic Hybrid Generator with Slit Effect. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38600737 DOI: 10.1021/acsami.4c03113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
It is of great significance to establish a low-cost, high-efficiency, self-powered micrometeorological monitoring system for agriculture, animal husbandry, and transportation. However, each additional detection element in the meteorological monitoring system increases the power consumption of the whole system by about 0.7 W. As a renewable energy technology, a triboelectric nanogenerator has the advantages of low price and self-powered sensing. To reduce the power consumption of the micrometeorological monitoring system, this work introduces an innovative solution: the wind-gathering enhanced triboelectric-electromagnetic hybrid generator (WGE-TEHG). Coupling the thin-film vibrating triboelectric nanogenerator (TENG) and electromagnetic generator (EMG), the TENG is used to monitor wind direction and the EMG is used to monitor wind speed and provide energy needed by the system. In particular, the TENG can be used as a self-powered sensor to reduce the power consumption of the sensing system. Besides, the TENG is used to produce slit effect to enhance the output performance of EMG. The experimental results show that the WGE-TEHG can build a self-powered natural environment micrometeorological sensing system. It can monitor the wind direction, wind speed, temperature, and relative humidity. This research has great application value for the self-powered sensing implementation of a hybrid TENG and EMG.
Collapse
Affiliation(s)
- Yuqi Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenkai Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Changcheng Bao
- The Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Hengyu Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingting Wang
- The Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou 510555, China
| | - Tinghai Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou 510555, China
| |
Collapse
|
4
|
Lyu C, Cheng J, Yang Y, Lau WM, Wang N, Wu Q, Zheng J. Modulating metal-support interaction and inducing electron-rich environment of Ni 2P NPs by B atoms incorporation for enhanced hydrogen evolution reaction performance. J Colloid Interface Sci 2023; 651:93-105. [PMID: 37540933 DOI: 10.1016/j.jcis.2023.07.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Modulation of the electronic interaction between the metal and support has been verified as a feasible strategy to improve the electrocatalytic performance of supported-type catalysts. Here, we have successfully synthesized an electrocatalyst of Ni2P nanoparticles (NPs) anchored on B, N co-doped graphite-like carbon nanosheets (Ni2P@B, N-GC), and elucidated the main mechanism by which B atoms doping enhances electrocatalytic hydrogen evolution reaction (HER) performance. The B atoms with electron-rich characteristic not only modulate the electronic structure on carbon skeleton, but also regulate the interfacial electronic interaction between Ni2P NPs and the carbon skeleton, which can lead to the increased available electron density of Ni sites. Such optimization is conducive to accelerating proton transfer and promoting reactive activity. As revealed, the Ni2P@B, N-GC catalyst with B atoms doping exhibits superior performance to the Ni2P@N-GC catalyst in acidic, neutral and alkaline medias. In addition, the assembled Ni(OH)2@B, N-GC||Ni2P@B, N-GC electrolyzer displays prominent overall water splitting performance in alkaline solution, which only demands 1.57 V to reach 10 mA/cm2, and in complicated natural seawater electrolyte, as low as 1.59 V. Hence, the B atoms doping strategy shows the significant enhancement for HER electrocatalysis.
Collapse
Affiliation(s)
- Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528000, China
| | - Jiarun Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528000, China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528000, China
| | - Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528000, China.
| |
Collapse
|
5
|
Liu D, Zhang J, Cui S, Zhou L, Gao Y, Wang ZL, Wang J. Recent Progress of Advanced Materials for Triboelectric Nanogenerators. SMALL METHODS 2023; 7:e2300562. [PMID: 37330665 DOI: 10.1002/smtd.202300562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Triboelectric nanogenerators (TENGs) have received intense attention due to their broad application prospects in the new era of internet of things (IoTs) as distributed power sources and self-powered sensors. Advanced materials are vital components for TENGs, which decide their comprehensive performance and application scenarios, opening up the opportunity to develop efficient TENGs and expand their potential applications. In this review, a systematic and comprehensive overview of the advanced materials for TENGs is presented, including materials classifications, fabrication methods, and the properties required for applications. In particular, the triboelectric, friction, and dielectric performance of advanced materials is focused upon and their roles in designing the TENGs are analyzed. The recent progress of advanced materials used in TENGs for mechanical energy harvesting and self-powered sensors is also summarized. Finally, an overview of the emerging challenges, strategies, and opportunities for research and development of advanced materials for TENGs is provided.
Collapse
Affiliation(s)
- Di Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayue Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Shengnan Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yikui Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Wang Y, Duan J, Guo Q, Zhao Y, Yang X, Tang Q. Self-powered PtNi-polyaniline films for converting rain energy into electricity. RSC Adv 2023; 13:24805-24811. [PMID: 37608972 PMCID: PMC10440591 DOI: 10.1039/d3ra03526c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Developing novel rainwater energy harvesting beyond conventional electricity is a promising strategy to address the problems of the energy crisis and environmental pollution. In this current work, a class of self-powered PtNi and optimal PtNi-polyaniline (PANI) films are successfully developed to convert rainwater into electricity for power generation. The maximized current, voltage and power of the self-powered PtNi-PANI films are 4.95 μA per droplet, 69.85 μV per droplet and 416.54 pW per droplet, respectively, which are attributed to the charging/discharging electrical signals between the cations provided by the rainwater and the electrons offered by the films. These results indicate that the optimized signal values are highly dependent on the elevated electron concentration of films, as well as the concentration, radius and charge of ions in rainwater. This work provides fresh insights into rain energy and enriches our knowledge of how to convert renewable energy into electricity generation.
Collapse
Affiliation(s)
- Yingli Wang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Jialong Duan
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Qiyao Guo
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Yuanyuan Zhao
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Xiya Yang
- Institute of New Energy Technology, College of Information Science and Technology, Jinan University Guangzhou 510632 P. R. China
| | - Qunwei Tang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology Qingdao 266590 P. R. China
| |
Collapse
|
7
|
Karl TA, Seidl M, König B. Energy Harvesting: Synthetic Use of Recovered Energy in Electrochemical Late‐Stage Functionalization. ChemElectroChem 2023. [DOI: 10.1002/celc.202201097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tobias A. Karl
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| | - Max Seidl
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| |
Collapse
|