1
|
Xi Z, Yao H, Zhang T, Su Z, Wang B, Feng W, Pu Q, Zhao L. Quantitative Three-Dimensional Imaging Analysis of HfO 2 Nanoparticles in Single Cells via Deep Learning Aided X-ray Nano-Computed Tomography. ACS NANO 2024; 18:22378-22389. [PMID: 39115329 PMCID: PMC11342356 DOI: 10.1021/acsnano.4c06953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
It is crucial for understanding mechanisms of drug action to quantify the three-dimensional (3D) drug distribution within a single cell at nanoscale resolution. Yet it remains a great challenge due to limited lateral resolution, detection sensitivities, and reconstruction problems. The preferable method is using X-ray nano-computed tomography (Nano-CT) to observe and analyze drug distribution within cells, but it is time-consuming, requiring specialized expertise, and often subjective, particularly with ultrasmall metal nanoparticles (NPs). Furthermore, the accuracy of batch data analysis through conventional processing methods remains uncertain. In this study, we used radioenhancer ultrasmall HfO2 nanoparticles as a model to develop a modular and automated deep learning aided Nano-CT method for the localization quantitative analysis of ultrasmall metal NPs uptake in cancer cells. We have established an ultrasmall objects segmentation method for 3D Nano-CT images in single cells, which can highly sensitively analyze minute NPs and even ultrasmall NPs in single cells. We also constructed a localization quantitative analysis method, which may accurately segment the intracellularly bioavailable particles from those of the extracellular space and intracellular components and NPs. The high bioavailability of HfO2 NPs in tumor cells from deeper penetration in tumor tissue and higher tumor intracellular uptake provide mechanistic insight into HfO2 NPs as advanced radioenhancers in the combination of quantitative subcellular image analysis with the therapeutic effects of NPs on 3D tumor spheroids and breast cancer. Our findings unveil the substantial uptake rate and subcellular quantification of HfO2 NPs by the human breast cancer cell line (MCF-7). This revelation explicates the notable efficacy and safety profile of HfO2 NPs in tumor treatment. These findings demonstrate that this 3D imaging technique promoted by the deep learning algorithm has the potential to provide localization quantitative information about the 3D distributions of specific molecules at the nanoscale level. This study provides an approach for exploring the subcellular quantitative analysis of NPs in single cells, offering a valuable quantitative imaging tool for minute amounts or ultrasmall NPs.
Collapse
Affiliation(s)
- Zuoxin Xi
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School
of Information Engineering, Minzu University
of China, Beijing 100081, China
| | - Haodong Yao
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingfeng Zhang
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyi Su
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Feng
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiumei Pu
- School
of Information Engineering, Minzu University
of China, Beijing 100081, China
| | - Lina Zhao
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang XY, Hong Q, Zhou ZR, Jin ZY, Li DW, Qian RC. Holistic Prediction of AuNP Aggregation in Diverse Aqueous Suspensions Based on Machine Vision and Dark-Field Scattering Imaging. Anal Chem 2024; 96:1506-1514. [PMID: 38215343 DOI: 10.1021/acs.analchem.3c03968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The localized surface-plasmon resonance of the AuNP in aqueous media is extremely sensitive to environmental changes. By measuring the signal of plasmon scattering light, the dark-field microscopic (DFM) imaging technique has been used to monitor the aggregation of AuNPs, which has attracted great attention because of its simplicity, low cost, high sensitivity, and universal applicability. However, it is still challenging to interpret DFM images of AuNP aggregation due to the heterogeneous characteristics of the isolated and discontinuous color distribution. Herein, we introduce machine vision algorithms for the training of DFM images of AuNPs in different saline aqueous media. A visual deep learning framework based on AlexNet is constructed for studying the aggregation patterns of AuNPs in aqueous suspensions, which allows for rapid and accurate identification of the aggregation extent of AuNPs, with a prediction accuracy higher than 0.96. With the aid of machine learning analysis, we further demonstrate the prediction ability of various aggregation phenomena induced by both cation species and the concentration of the external saline solution. Our results suggest the great potential of machine vision frameworks in the accurate recognition of subtle pattern changes in DFM images, which can help researchers build predictive analytics based on DFM imaging data.
Collapse
Affiliation(s)
- Xiao-Yuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qin Hong
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zi-Yue Jin
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Gui C, Zhang Z, Li Z, Luo C, Xia J, Wu X, Chu J. Deep learning analysis on transmission electron microscope imaging of atomic defects in two-dimensional materials. iScience 2023; 26:107982. [PMID: 37810254 PMCID: PMC10551659 DOI: 10.1016/j.isci.2023.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Defects are prevalent in two-dimensional (2D) materials due to thermal equilibrium and processing kinetics. The presence of various defect types can affect material properties significantly. With the development of the advanced transmission electron microscopy (TEM), the property-related structures could be investigated in multiple dimensions. It produces TEM datasets containing a large amount of information. Traditional data analysis is influenced by the subjectivity of researchers, and manual analysis is inefficient and imprecise. Recent developments in deep learning provide robust methods for the quantitative identification of defects in 2D materials efficiently and precisely. Taking advantage of big data, it breaks the limitations of TEM as a local characterization tool, making TEM an intelligent macroscopic analysis method. In this review, the recent developments in the TEM data analysis of defects in 2D materials using deep learning technology are summarized. Initially, an in-depth examination of the distinctions between TEM and natural images is presented. Subsequently, a comprehensive exploration of TEM data analysis ensues, encompassing denoising, point defects, line defects, planar defects, quantitative analysis, and applications. Furthermore, an exhaustive assessment of the significant obstacles encountered in the accurate identification of distinct structures is also provided.
Collapse
Affiliation(s)
- Chen Gui
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
| | - Zhihao Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
| | - Zongyi Li
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
- JCET SEMICONDUCTOR INTEGRATION (SHAOXING) CO, LTD, Shaoxing, Zhejiang 312000, China
| | - Chen Luo
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China. Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| | - Jiang Xia
- JCET SEMICONDUCTOR INTEGRATION (SHAOXING) CO, LTD, Shaoxing, Zhejiang 312000, China
| | - Xing Wu
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Junhao Chu
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China. Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| |
Collapse
|