1
|
Wang S, Levshov DI, Otsuka K, Zhang BW, Zheng Y, Feng Y, Liu M, Kauppinen EI, Xiang R, Chiashi S, Wenseleers W, Cambré S, Maruyama S. Evaluating the Efficiency of Boron Nitride Coating in Single-Walled Carbon-Nanotube-Based 1D Heterostructure Films by Optical Spectroscopy. ACS NANO 2024; 18:9917-9928. [PMID: 38548470 PMCID: PMC11008362 DOI: 10.1021/acsnano.3c09615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Single-walled carbon nanotube (SWCNT) films exhibit exceptional optical and electrical properties, making them highly promising for scalable integrated devices. Previously, we employed SWCNT films as templates for the chemical vapor deposition (CVD) synthesis of one-dimensional heterostructure films where boron nitride nanotubes (BNNTs) and molybdenum disulfide nanotubes (MoS2NTs) were coaxially nested over the SWCNT networks. In this work, we have further refined the synthesis method to achieve precise control over the BNNT coating in SWCNT@BNNT heterostructure films. The resulting structure of the SWCNT@BNNT films was thoroughly characterized using a combination of electron microscopy, UV-vis-NIR spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. Specifically, we investigated the pressure effect induced by BNNT wrapping on the SWCNTs in the SWCNT@BNNT heterostructure film and demonstrated that the shifts of the SWCNT's G and 2D (G') modes in Raman spectra can be used as a probe of the efficiency of BNNT coating. In addition, we studied the impact of vacuum annealing on the removal of the initial doping in SWCNTs, arising from exposure to ambient atmosphere, and examined the effect of MoO3 doping in SWCNT films by using UV-vis-NIR spectroscopy and Raman spectroscopy. We show that through correlation analysis of the G and 2D (G') modes in Raman spectra, it is possible to discern distinct types of doping effects as well as the influence of applied pressure on the SWCNTs within SWCNT@BNNT heterostructure films. This work contributes to a deeper understanding of the strain and doping effect in both SWCNTs and SWCNT@BNNTs, thereby providing valuable insights for future applications of carbon-nanotube-based one-dimensional heterostructures.
Collapse
Affiliation(s)
- Shuhui Wang
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Dmitry I. Levshov
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, Antwerp 2610, Belgium
| | - Keigo Otsuka
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Bo-Wen Zhang
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Yongjia Zheng
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Ya Feng
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Ming Liu
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Esko I. Kauppinen
- Department
of Applied Physics, Aalto University School
of Science, Espoo 15100, FI-00076 Aalto, Finland
| | - Rong Xiang
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Shohei Chiashi
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Wim Wenseleers
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, Antwerp 2610, Belgium
| | - Sofie Cambré
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, Antwerp 2610, Belgium
| | - Shigeo Maruyama
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Zhang M, Shen L, Yu C, Li T, Bai S, Su Y, Liu Z, Li Y. Boosting the Faraday Efficiency of Electrochemical Ammonia Synthesis via the Strain Effect Induced by Interfacial Hybrid Formation between BN and Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8832-8841. [PMID: 38327039 DOI: 10.1021/acsami.3c17530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The electrochemical nitrogen reduction reaction (eNRR) is a highly promising alternative to the Haber-Bosch (H-B) process, but its commercial development is limited by the high bond energy of N2 molecules and the presence of the competitive hydrogen evolution reaction (HER). Here, a metal-free composite electrocatalyst of boron nitride (h-BNNs) and carbon nanotubes (CNTs) was explored through the interfacial hybridization of h-BNNs and CNTs, which showed a highly improved eNRR Faraday efficiency (FE) of 63.9% and an NH3 yield rate of 36.5 μg h-1 mgcat.-1 at -0.691 V (vs RHE). New chemical bonds of C-B and C-N were observed, indicating a strong interaction between CNTs and h-BNNs. According to the Raman spectra and the optimized model of h-BNNs/CNTs, an obvious strain effect between h-BNNs and CNTs was supposed to play a significant role in the highly improved FE, compared with the FE of h-BNNs alone (4.7%). Density functional theory (DFT) calculations further showed that h-BNNs/CNTs had lower energy barriers in eNRR, giving them higher N2 to NH3 selectivity, while h-BNNs have lower energy barriers in the HER. This work shows the important role of the strain effect in boosting the selectivity in the eNRR process.
Collapse
Affiliation(s)
- Meng Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lihua Shen
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chunxia Yu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tian Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Shuaishuai Bai
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yanwei Su
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhifang Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
3
|
Zhou H, Zhang C, Gao A, Shi E, Guo Y. Patterned growth of two-dimensional atomic layer semiconductors. Chem Commun (Camb) 2024; 60:943-955. [PMID: 38168791 DOI: 10.1039/d3cc04866g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Transition metal dichalcogenides (TMDCs), which are representative of two-dimensional (2D) semiconductors, have attracted tremendous attention over the last two decades. TMDCs are regarded as potential candidates in modern nano- and optoelectronic applications due to their unique crystal structures and outstanding electronic and optoelectronic properties. For practical use, 2D semiconductors need to be fabricated with diverse morphologies for integration into electronic devices and to perform different functionalities. Controlled patterning synthesis with programmable geometries is therefore highly desired. We review state-of-the-art strategies for the patterned growth of atomic layer TMDCs and their heterostructures, including additive manufacturing and subtractive manufacturing for patterning single TMDC materials and the introduction of other low-dimensional nanomaterials as growth templates or hetero-atoms for element conversion in patterning TMDC heterostructures. The optoelectronic and electronic applications of the as-grown monolayer TMDC patterns are introduced. Future challenges and the prospects for the patterned growth of 2D semiconductors are discussed based on present achievements.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Polar Materials and Devices(MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Chiyu Zhang
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Anran Gao
- Key Laboratory of Polar Materials and Devices(MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China.
| | - Enzheng Shi
- School of Engineering, Westlake University, Hangzhou, 310030, China.
| | - Yunfan Guo
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Cetindag S, Park SJ, Buchsbaum SF, Zheng Y, Liu M, Wang S, Xiang R, Maruyama S, Fornasiero F, Shan JW. Ion and Hydrodynamic Translucency in 1D van der Waals Heterostructured Boron-Nitride Single-Walled Carbon Nanotubes. ACS NANO 2024; 18:355-363. [PMID: 38134351 DOI: 10.1021/acsnano.3c07282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
An unresolved challenge in nanofluidics is tuning ion selectivity and hydrodynamic transport in pores, particularly for those with diameters larger than a nanometer. In contrast to conventional strategies that focus on changing surface functionalization or confinement degree by varying the radial dimension of the pores, we explore a unique approach for manipulating ion selectivity and hydrodynamic flow enhancement by externally coating single-walled carbon nanotubes (SWCNTs) with a few layers of hexagonal boron nitride (h-BN). For van der Waals heterostructured BN-SWCNTs, we observed a 9-fold increase in cation selectivity for K+ versus Cl- compared to pristine SWCNTs of the same 2.2 nm diameter, while hydrodynamic slip lengths decreased by more than an order of magnitude. These results suggest that the single-layer graphene inner surface may be translucent to charge-regulation and hydrodynamic-slip effects arising from h-BN on the outside of the SWCNT. Such 1D heterostructures could serve as synthetic platforms with tunable properties for exploring distinct nanofluidic phenomena and their potential applications.
Collapse
Affiliation(s)
- Semih Cetindag
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Sei Jin Park
- Physical and Life Sciences,Lawrence Livermore National Laboratory, Livermore, California 94550 United States
| | - Steven F Buchsbaum
- Physical and Life Sciences,Lawrence Livermore National Laboratory, Livermore, California 94550 United States
| | - Yongjia Zheng
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ming Liu
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shuhui Wang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Rong Xiang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Francesco Fornasiero
- Physical and Life Sciences,Lawrence Livermore National Laboratory, Livermore, California 94550 United States
| | - Jerry W Shan
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Cull W, Skowron ST, Hayter R, Stoppiello CT, Rance GA, Biskupek J, Kudrynskyi ZR, Kovalyuk ZD, Allen CS, Slater TJA, Kaiser U, Patanè A, Khlobystov AN. Subnanometer-Wide Indium Selenide Nanoribbons. ACS NANO 2023; 17:6062-6072. [PMID: 36916820 PMCID: PMC10061931 DOI: 10.1021/acsnano.3c00670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide InxSey by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of InxSey we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of InxSey. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm InxSey, namely InSe or β-In2Se3, can be prepared. Additionally, in situ AC-TEM heating experiments reveal that encapsulated β-In2Se3 undergoes a phase change to γ-In2Se3 above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components.
Collapse
Affiliation(s)
- William
J. Cull
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Stephen T. Skowron
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ruth Hayter
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Craig T. Stoppiello
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2QL, United Kingdom
| | - Graham A. Rance
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2QL, United Kingdom
| | - Johannes Biskupek
- Central
Facility of Electron Microscopy, Electron Microscopy Group of Materials
Science, University of Ulm, 89081 Ulm, Germany
| | - Zakhar R. Kudrynskyi
- School
of Physics, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Faculty
of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Zakhar D. Kovalyuk
- Institute
for Problems of Materials Science, National Academy of Sciences of
Ukraine, Chernivtsi Branch, 58001 Chernivtsi, Ukraine
| | - Christopher S. Allen
- Electron
Physical Sciences Imaging Centre, Diamond
Light Source ltd, Didcot OX11 0DE, United Kingdom
| | - Thomas J. A. Slater
- Electron
Physical Sciences Imaging Centre, Diamond
Light Source ltd, Didcot OX11 0DE, United Kingdom
| | - Ute Kaiser
- Central
Facility of Electron Microscopy, Electron Microscopy Group of Materials
Science, University of Ulm, 89081 Ulm, Germany
| | - Amalia Patanè
- School
of Physics, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Andrei N. Khlobystov
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2QL, United Kingdom
| |
Collapse
|