1
|
Gawade VK, Jadhav RW, Bhosale SV. AIE-Based & Organic Luminescent Materials: Nanoarchitectonics and Advanced Applications. Chem Asian J 2024; 19:e202400682. [PMID: 39136399 DOI: 10.1002/asia.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Indexed: 10/18/2024]
Abstract
Organic luminescence materials makes the molecule more enthusiastic in wide variety of applications. The luminescent organic materials are in a attraction of the researchers, and the Aggregation-Induced Emission (AIE) is attributed to the occurrence that particular chromophores (typically fluorophores) display very low or nearly no emission in the monomolecular soluble state but become highly emissive when forming aggregates in solution or in solid state. This phenomenon is relatively abnormal when compared with many other traditional fluorophores. AIE research suppresses aggregation-caused quenching (ACQ). Nevertheless, the carbon dots (CDs) and quantum dots have shown to have tyical florescence properties, therefore, recent years many researchers have also attracted for their developments. The CDs, luminescent, and AIE materials are not only used in biomedical applications and organic light-emitting diodes but also in sensing, self-assembly, and other areas. One should introduce promising material to a designed framework that exhibits AIE characteristics to ensure moral results in AIE. Amongest, AIE-active tetraphenylethylene (TPE) is attractive fluorophores due to its easy synthesis strategy. This review article discusses the synthesis properties of TPE, CDs, and luminescent materials with a broad range of applications. We have outlined linear, branched-shaped supramolecular, and hybrid macromolecules due to its potential in the future.
Collapse
Affiliation(s)
- Vilas K Gawade
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Karnataka, Kalaburgi, 585367, India
| | - Ratan W Jadhav
- Department of Chemical Sciences, IISER Kolkata, Kolkata, 741246, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Karnataka, Kalaburgi, 585367, India
| |
Collapse
|
2
|
Gou X, Zhao HY, Huang Z, Yang Y, Jin LY. Donor-Acceptor Assembly of Amphiphilic Molecules Based on 9,10-Distyrylanthracene Derivatives with Terminal Naphthalene Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7106-7113. [PMID: 38498422 DOI: 10.1021/acs.langmuir.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Amphiphilic rod-coil compounds have excellent photophysical properties and can be assembled into supramolecular nanostructures of different sizes in water or polar solvents. Herein, we synthesized the amphiphilic compounds 2N-DSA, 4N-DSA, and 6N-DSA with 9,10-distyrylanthracene (DSA) as the core and a naphthalene unit as the terminal group that connected DSA through a tetraethylene glycol chain. These compounds have excellent aggregation-induced emission (AIE) properties in aqueous solution and are assembled into worm-like fragments or different sizes of spherical assemblies, defending the volume ratio of the rod to coil segments. Notably, the donor-acceptor interaction between DSA and electron- deficient compounds 2,4,6-trinitrophenol (TNP), 2,4,5,7-tetranitrofluorenone (TNF), and tetraethylene glycol dinitrobenzoate (TGDNB) forms a charge transfer complex, which can be used as a nanoreactor to improve the yield of the Suzuki coupling reaction about 8-10 times. The experimental results reveal that the synergy effect of the donor-acceptor, intermolecular π-π stacking, and hydrophobic-hydrophilic interactions significantly influences the morphology of aggregates and the efficiency of the nanoreactor.
Collapse
Affiliation(s)
- Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhegang Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuntian Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Heuberger L, Messmer D, dos Santos EC, Scherrer D, Lörtscher E, Schoenenberger C, Palivan CG. Microfluidic Giant Polymer Vesicles Equipped with Biopores for High-Throughput Screening of Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307103. [PMID: 38158637 PMCID: PMC10953582 DOI: 10.1002/advs.202307103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 01/03/2024]
Abstract
Understanding the mechanisms of antibiotic resistance is critical for the development of new therapeutics. Traditional methods for testing bacteria are often limited in their efficiency and reusability. Single bacterial cells can be studied at high throughput using double emulsions, although the lack of control over the oil shell permeability and limited access to the droplet interior present serious drawbacks. Here, a straightforward strategy for studying bacteria-encapsulating double emulsion-templated giant unilamellar vesicles (GUVs) is introduced. This microfluidic approach serves to simultaneously load bacteria inside synthetic GUVs and to permeabilize their membrane with the pore-forming peptide melittin. This enables antibiotic delivery or the influx of fresh medium into the GUV lumen for highly parallel cultivation and antimicrobial efficacy testing. Polymer-based GUVs proved to be efficient culture and analysis microvessels, as microfluidics allow easy selection and encapsulation of bacteria and rapid modification of culture conditions for antibiotic development. Further, a method for in situ profiling of biofilms within GUVs for high-throughput screening is demonstrated. Conceivably, synthetic GUVs equipped with biopores can serve as a foundation for the high-throughput screening of bacterial colony interactions during biofilm formation and for investigating the effect of antibiotics on biofilms.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
| | - Daniel Messmer
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
| | - Elena C. dos Santos
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
| | - Dominik Scherrer
- IBM Research Europe–ZürichSäumerstrasse 4Rüschlikon8803Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe–ZürichSäumerstrasse 4Rüschlikon8803Switzerland
- NCCR‐Molecular Systems EngineeringMattenstrasse 24a, BPR 1095Basel4058Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
- NCCR‐Molecular Systems EngineeringMattenstrasse 24a, BPR 1095Basel4058Switzerland
- Swiss Nanoscience Institute (SNI)University of BaselKlingelbergstrasse 82Basel4056Switzerland
| |
Collapse
|
4
|
Zhang J, Tu Y, Shen H, Lam JWY, Sun J, Zhang H, Tang BZ. Regulating the proximity effect of heterocycle-containing AIEgens. Nat Commun 2023; 14:3772. [PMID: 37355670 PMCID: PMC10290688 DOI: 10.1038/s41467-023-39479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Proximity effect, which refers to the low-lying (n,π*) and (π,π*) states with close energy levels, usually plays a negative role in the luminescent behaviors of heterocyclic luminogens. However, no systematic study attempts to reveal and manipulate proximity effect on luminescent properties. Here, we report a series of methylquinoxaline derivatives with different electron-donating groups, which show different photophysical properties and aggregation-induced emission behaviors. Experimental results and theoretical calculation reveal the gradually changed energy levels and different coupling effects of the closely related (n,π*) and (π,π*) states, which intrinsically regulate proximity effect and aggregation-induced emission behaviors of these luminogens. With the intrinsic nature of heterocycle-containing compounds, they are utilized for sensors and information encryption with dynamic responses to acid/base stimuli. This work reveals both positive and negative impacts of proximity effect in heterocyclic aggregation-induced emission systems and provides a perspective to develop functional and responsive luminogens with aggregation-induced emission properties.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yujie Tu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China.
| |
Collapse
|