1
|
Kaur R, Gaur A, Pundir V, Arun K, Bagchi V. Unleashing unprecedented activation of high-valent Ni and Fe charge dynamics in CeF 3-NiFe layered double hydroxide heterostructure: Demonstrating oxygen evolution reaction at an extremely high current density. J Colloid Interface Sci 2024; 672:736-743. [PMID: 38870764 DOI: 10.1016/j.jcis.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The efficacy of any electrochemical reaction hinges on the extent of interaction achievable between reactive intermediates and the electrocatalytic active site. Any weak adsorption of these intermediates on the metal's active site results in low oxygen evolution reaction (OER) rates, mainly when catalysed by the Ni-based layered double hydroxide. To tackle this challenge, a heterojunction consisting of nickel-iron layered double hydroxide (NiFe-LDH) and cerium trifluoride (CeF3) is synthesized. Both phases were developed in-situ to have an abundance of heterointerfaces. The charge transfer amid the NiFe-LDH and CeF3 phases is brought about via these heterointerfaces. As a result, the overall charge dynamics associated with nickel (Ni) and iron (Fe) atoms are somewhat increased, and an enhanced positive charge on the metal site makes it more active in grabbing the reactive species, thereby making the entire OER process faster. The CeF3-NiFeLDH catalyst reaches a current density of 1000 mA cm-2 at an overpotential of 340 mV. Such a high current density is highly significant for the industrial-scale production of the products. The catalyst demonstrated impressive durability, maintaining stable performance for 90 h while operating at 500 mA cm-2. The charge dynamics between both phases were thoroughly examined using X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Rajdeep Kaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Ashish Gaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vikas Pundir
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - K Arun
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vivek Bagchi
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.
| |
Collapse
|
2
|
Zhang W, Zhu C, Wen Y, Wang M, Lu Z, Wang Y. Strontium Doped IrO x Triggers Direct O-O Coupling to Boost Acid Water Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2024:e202418456. [PMID: 39387682 DOI: 10.1002/anie.202418456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
The discovery of efficient and stable electrocatalysts for the oxygen evolution reaction (OER) in acidic conditions is crucial for the commercialization of proton-exchange membrane water electrolyzers. In this work, we propose a Sr(OH)2-assisted method to fabricate a (200) facet highly exposed strontium-doped IrOx catalyst to provide available adjacent iridium sites with lower Ir-O covalency. This design facilitates direct O-O coupling during the acidic water oxidation process, thereby circumventing the high energy barrier associated with the generation of *OOH intermediates. Benefiting from this advantage, the resulting Sr-IrOx catalyst exhibits an impressive overpotential of 207 mV at a current density of 10 mA cm-2 in 0.5 M H2SO4. Furthermore, a PEMWE device utilizing Sr-IrOx as the anodic catalyst demonstrates a cell voltage of 1.72 V at 1 A cm-2 and maintains excellent stability for over 500 hours. Our work not only provides guidance for the design of improved acidic OER catalysts but also encourages the development of iridium-based electrocatalysts with novel mechanisms for other electrocatalytic reactions.
Collapse
Affiliation(s)
- Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
| | - Caihan Zhu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
| | - Yingjie Wen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
| | - Minli Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunan Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Leitão MIPS, Morais TS. Tailored Metal-Based Catalysts: A New Platform for Targeted Anticancer Therapies. J Med Chem 2024; 67:16967-16990. [PMID: 39348603 DOI: 10.1021/acs.jmedchem.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Innovative strategies for targeted anticancer therapies have gained significant momentum, with metal complexes emerging as tunable catalysts for more effective and safer treatments. Rational design and engineering of metal complexes enable the development of tailored molecular structures optimized for precision oncology. The strategic incorporation of metal complex catalysts within combinatorial therapies amplifies their anticancer properties. This perspective highlights the advancements in synthetic strategies and rational design since 2019, showing how tailored metal catalysts are optimized by designing structures to release or in situ synthesize active drugs, leveraging the target-specific characteristics to develop more precise cancer therapies. This review explores metal-based catalysts, including those conjugated with biomolecules, nanostructures, and metal-organic frameworks (MOFs), highlighting their catalytic activity in biological environments and their in vitro/in vivo performance. To sum up, the potential of metal complexes as catalysts to reshape the landscape of anticancer therapies and foster novel avenues for therapeutic advancement is emphasized.
Collapse
Affiliation(s)
- Maria Inês P S Leitão
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
4
|
Mahmood A, He D, Liu C, Talib SH, Zhao B, Liu T, He Y, Song Z, Chen L, Han D, Niu L. Effect of Selective Metallic Defects on Catalytic Performance of Alloy Nanosheets. SMALL METHODS 2024; 8:e2301490. [PMID: 38063782 DOI: 10.1002/smtd.202301490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 10/24/2024]
Abstract
Defects in the crystal structure of nanomaterials are important for their diverse applications. As, defects in 2D framework allow surface confinement effects, efficient molecular accessibility, high surface-area to volume-ratio and lead to higher catalytic activity, but it is challenging to expose defects of specific metal on the surface of 2D alloy and find the correlation between defective structure and electrocatalytic properties with atomic precision. Herein, the work paves the way for the controlled synthesis of ultrathin porous Ir-Cu nanosheets (NSs) with selectively iridium (Ir) rich defects to boost their performance for acidic oxygen evolution reaction (OER). X-ray absorption spectroscopy reveals that the oxidized states of Ir in defects of porous NSs significantly impact the electronic structure and decline the energy barrier. As a result, porous Ir-Cu/C NSs deliver improved OER activity with an overpotential of 237 mV for reaching 10 mA cm-2 and exhibit significantly higher mass activity than benchmark Ir/C under acidic conditions. Therefore, the present work highlights the concept of constructing a selective noble metal defect-rich open structure for catalytic applications.
Collapse
Affiliation(s)
- Azhar Mahmood
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dequan He
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Chuhao Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shamraiz Hussain Talib
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Advanced Materials Chemistry Centre, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Bolin Zhao
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Tianren Liu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ying He
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhongqian Song
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Lijuan Chen
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
5
|
Cho DK, Lim HW, Haryanto A, Yan B, Lee CW, Kim JY. Intercalation-Induced Irreversible Lattice Distortion in Layered Double Hydroxides. ACS NANO 2024. [PMID: 39037642 DOI: 10.1021/acsnano.4c04832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Inducing strain in the lattice effectively enhances the intrinsic activity of electrocatalysts by shifting the metal's d-band center and tuning the binding energy of reaction intermediates. NiFe-layered double hydroxides (NiFe LDHs) are promising electrocatalysts for the oxygen evolution reaction (OER) due to their cost-effectiveness and high catalytic activity. The distorted β-NiOOH phase produced by the Jahn-Teller effect under the oxidation polarization is known to exhibit superior catalytic activity, but it eventually transforms to the undistorted γ-NiOOH phase during the OER process. Such a reversible lattice distortion limits the OER activity. In this study, we propose a facile boron tungstate (BWO) anion intercalation method to induce irreversible lattice distortion in NiFe LDHs, leading to significantly enhanced OER activity. Strong interactions with BWO anions induce significant stress on the LDH's metal-hydroxide slab, leading to an expansion of metal-oxygen bonds and subsequent lattice distortion. In situ Raman spectroscopy revealed that lattice-distorted NiFe LDHs (D-NiFe LDHs) stabilize the β-NiOOH phase under the OER conditions. Consequently, D-NiFe LDHs exhibited low OER overpotentials (209 and 276 mV for 10 and 500 mA cm-2, respectively), along with a modest Tafel slope (33.4 mV dec-1). Moreover, D-NiFe LDHs demonstrated excellent stability at 500 mA cm-2 for 50 h, indicating that the lattice distortion of the LDHs is irreversible. The intercalation-induced lattice strain reported in this study can provide a general strategy to enhance the activity of electrocatalysts.
Collapse
Affiliation(s)
- Deok Ki Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Woo Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Andi Haryanto
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Bingyi Yan
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SNU Materials Education/Research Division for Creative Global Leaders, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan Woo Lee
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Jin Young Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Liu H, Wang X, Lao K, Wen L, Huang M, Liu J, Hu T, Hu B, Xie S, Li S, Fang X, Zheng N, Tao HB. Optimizing Ionomer Distribution in Anode Catalyst Layer for Stable Proton Exchange Membrane Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402780. [PMID: 38661112 DOI: 10.1002/adma.202402780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The high cost of proton exchange membrane water electrolysis (PEMWE) originates from the usage of precious materials, insufficient efficiency, and lifetime. In this work, an important degradation mechanism of PEMWE caused by dynamics of ionomers over time in anode catalyst layer (ACL), which is a purely mechanical degradation of microstructure, is identified. Contrary to conventional understanding that the microstructure of ACL is static, the micropores are inclined to be occupied by ionomers due to the localized swelling/creep/migration, especially near the ACL/PTL (porous transport layer) interface, where they form transport channels of reactant/product couples. Consequently, the ACL with increased ionomers at PTL/ACL interface exhibit rapid and continuous degradation. In addition, a close correlation between the microstructure of ACL and the catalyst ink is discovered. Specifically, if more ionomers migrate to the top layer of the ink, more ionomers accumulate at the ACL/PEM interface, leaving fewer ionomers at the ACL/PTL interface. Therefore, the ionomer distribution in ACL is successfully optimized, which exhibits reduced ionomers at the ACL/PTL interface and enriches ionomers at the ACL/PEM interface, reducing the decay rate by a factor of three when operated at 2.0 A cm-2 and 80 °C. The findings provide a general way to achieve low-cost hydrogen production.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Xinhui Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Kejie Lao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Linrui Wen
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Meiquan Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Jiawei Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Tian Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Bo Hu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Shunji Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Shuirong Li
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Xiaoliang Fang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
7
|
Zhao L, Tao Z, You M, Xiao H, Wang S, Ma W, Huang Y, He B, Chen Q. Partial Exsolution Enables Superior Bifunctionality of Ir@SrIrO 3 for Acidic Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309750. [PMID: 38564772 PMCID: PMC11199977 DOI: 10.1002/advs.202309750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Indexed: 04/04/2024]
Abstract
The pursuit of efficient and durable bifunctional electrocatalysts for overall water splitting in acidic media is highly desirable, albeit challenging. SrIrO3 based perovskites are electrochemically active for oxygen evolution reaction (OER), however, their inert activities toward hydrogen evolution reaction (HER) severely restrict the practical implementation in overall water splitting. Herein, an Ir@SrIrO3 heterojunction is newly developed by a partial exsolution approach, ensuring strong metal-support interaction for OER and HER. Notably, the Ir@SrIrO3-175 electrocatalyst, prepared by annealing SrIrO3 in 5% H2 atmosphere at 175 °C, delivers ultralow overpotentials of 229 mV at 10 mA cm-2 for OER and 28 mV at 10 mA cm-2 for HER, surpassing most recently reported bifunctional electrocatalysts. Moreover, the water electrolyzer using the Ir@SrIrO3-175 bifunctional electrocatalyst demonstrates the potential application prospect with high electrochemical performance and excellent durability in acidic environment. Theoretical calculations unveil that constructing Ir@SrIrO3 heterojunction regulates interfacial electronic redistribution, ultimately enabling low energy barriers for both OER and HER.
Collapse
Affiliation(s)
- Ling Zhao
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Zetian Tao
- School of Resources, Environment and Safety EngineeringUniversity of South ChinaHengyangHunan421001P. R. China
| | - Maosheng You
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Huangwei Xiao
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Sijiao Wang
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Wenjia Ma
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Yonglong Huang
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Beibei He
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Qi Chen
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
| |
Collapse
|
8
|
Zhao H, Zhu L, Yin J, Jin J, Du X, Tan L, Peng Y, Xi P, Yan CH. Stabilizing Lattice Oxygen through Mn Doping in NiCo 2O 4-δ Spinel Electrocatalysts for Efficient and Durable Acid Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202402171. [PMID: 38494450 DOI: 10.1002/anie.202402171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Design the electrocatalysts without noble metal is still a challenge for oxygen evolution reaction (OER) in acid media. Herein, we reported the manganese (Mn) doping method to decrease the concentration of oxygen vacancy (VO) and form the Mn-O structure adjacent octahedral sites in spinel NiCo2O4-δ (NiMn1.5Co3O4-δ), which highly enhanced the activity and stability of spinel NiCo2O4-δ with a low overpotential (η) of 280 mV at j=10 mA cm-2 and long-term stability of 80 h in acid media. The isotopic labelling experiment based on differential electrochemical mass spectrometry (DEMS) clearly demonstrated the lattice oxygen in NiMn1.5Co3O4-δ is more stable due to strong Mn-O bond and shows synergetic adsorbate evolution mechanism (SAEM) for acid OER. Density functional theory (DFT) calculations reveal highly increased oxygen vacancy formation energy (EVO) of NiCo2O4-δ after Mn doping. More importantly, the highly hydrogen bonding between Mn-O and *OOH adsorbed on adjacent Co octahedral sites promote the formation of *OO from *OOH due to the greatly enhanced charge density of O in Mn substituted sites.
Collapse
Affiliation(s)
- Hongyu Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Liu Zhu
- School of Materials and Energy, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Tan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yong Peng
- School of Materials and Energy, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University. The University of Hong Kong Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
Wang P, Zhang C, Ding J, Ji Y, Li Y, Zhang W. Motivating Inert Strontium Manganate with Iridium Dopants as Efficient Electrocatalysts for Oxygen Evolution in Acidic Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305662. [PMID: 37897152 DOI: 10.1002/smll.202305662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/14/2023] [Indexed: 10/29/2023]
Abstract
The search for high-performance and low-cost electrocatalysts in acid conditions still remains a challenging target. Herein, iridium (Ir) doped strontium manganate (named as Irx -SMO) is proposed as an efficient and durable low-iridium electrocatalyst for water oxidation in acidic media. The Ir0.1 -SMO with 75% less iridium in comparison to that of iridium dioxide (IrO2 ) exhibits excellent performance for oxygen evolution reaction (OER), which is even better than most of the iridium-based oxide electrocatalysts. The theoretical outcomes confirm the activation of the inert manganese sites in strontium manganate by the incorporation of iridium dopants. This work reveals the boosted effect of the iridium dopants on the OER activity of strontium manganate, providing a strategy to tune the activity of manganese-based perovskites in electrocatalysis.
Collapse
Affiliation(s)
- Piao Wang
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, China
| | - Changle Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Jiabao Ding
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau
| | - Weifeng Zhang
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, China
- Center for Topological Functional Materials, Henan University, Kaifeng, 475004, China
| |
Collapse
|
10
|
Zhang J, Shi L, Tong R, Yang L. Highly Active Pyrochlore-Type Praseodymium Ruthenate Electrocatalyst for Efficient Acid-Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917040 DOI: 10.1021/acsami.3c08908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
To produce directly combustible hydrogen from water, highly active, acid-resistant, and economical catalysts for oxygen evolution reaction (OER) are needed. An electrocatalyst based on praseodymium ruthenate (Pr2Ru2O7) is presented here that greatly outperforms RuO2 for acid-water oxidation. Specifically, at 10 mA cm-2, this electrocatalyst presents a low overpotential (η) of 213 mV and markedly superior stability. Moreover, Pr2Ru2O7 presents a significant rise in turnover frequency (TOF) and a highly intrinsic mass activity of 1618.8 A gRu-1 (η = 300 mV), exceeding the most commonly reported acid OER catalysts. Density functional theory calculations and electronic structure study demonstrate that the Ru 4d-band center related to the longer Ru-O bond with a large radius of Pr ion in this pyrochlore is lower than that in RuO2, which would optimize the binding between the adsorbed oxygen species and catalytic metal sites and enhance the catalytic intrinsic activity.
Collapse
Affiliation(s)
- Jinhui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| | - Lei Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| | - Ruixue Tong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| | - Liping Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| |
Collapse
|
11
|
Galyamin D, Tolosana-Moranchel Á, Retuerto M, Rojas S. Unraveling the Most Relevant Features for the Design of Iridium Mixed Oxides with High Activity and Durability for the Oxygen Evolution Reaction in Acidic Media. JACS AU 2023; 3:2336-2355. [PMID: 37772191 PMCID: PMC10523372 DOI: 10.1021/jacsau.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 09/30/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) is the technology of choice for the large-scale production of green hydrogen from renewable energy. Current PEMWEs utilize large amounts of critical raw materials such as iridium and platinum in the anode and cathode electrodes, respectively. In addition to its high cost, the use of Ir-based catalysts may represent a critical bottleneck for the large-scale production of PEM electrolyzers since iridium is a very expensive, scarce, and ill-distributed element. Replacing iridium from PEM anodes is a challenging matter since Ir-oxides are the only materials with sufficient stability under the highly oxidant environment of the anode reaction. One of the current strategies aiming to reduce Ir content is the design of advanced Ir-mixed oxides, in which the introduction of cations in different crystallographic sites can help to engineer the Ir active sites with certain characteristics, that is, environment, coordination, distances, oxidation state, etc. This strategy comes with its own problems, since most mixed oxides lack stability during the OER in acidic electrolyte, suffering severe structural reconstruction, which may lead to surfaces with catalytic activity and durability different from that of the original mixed oxide. Only after understanding such a reconstruction process would it be possible to design durable and stable Ir-based catalysts for the OER. In this Perspective, we highlight the most successful strategies to design Ir mixed oxides for the OER in acidic electrolyte and discuss the most promising lines of evolution in the field.
Collapse
Affiliation(s)
| | | | - María Retuerto
- Grupo de Energía y
Química Sostenibles. Instituto de
Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| | - Sergio Rojas
- Grupo de Energía y
Química Sostenibles. Instituto de
Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
12
|
Qiao C, Usman Z, Wei J, Gan L, Hou J, Hao Y, Zhu Y, Zhang J, Cao C. Efficient O-O Coupling at Catalytic Interface to Assist Kinetics Optimization on Concerted and Sequential Proton-Electron Transfer for Water Oxidation. ACS NANO 2023. [PMID: 37377176 DOI: 10.1021/acsnano.3c00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A catalyst kinetics optimization strategy based on tuning active site intermediates adsorption is proposed. Construction of the M-OOH on the catalytic site before the rate-determining step (RDS) is considered a central issue in the strategy, which can optimize the overall catalytic kinetics by avoiding competition from other reaction intermediates on the active site. Herein, the kinetic energy barrier of the O-O coupling for as-prepared sulfated Co-NiFe-LDH nanosheets is significantly reduced, resulting in the formation of M-OOH on the active site at low overpotential, which is directly confirmed by in situ Raman and charge transfer fitting results. Moreover, catalysts constructed from active sites of highly efficient intermediates make a reliable model for studying the mechanism of the OER in proton transfer restriction. In weakly alkaline environments, a sequential proton-electron transfer (SPET) mechanism replaces the concerted proton-electron transfer (CPET) mechanism, and the proton transfer step becomes the RDS; high-speed consumption of reaction intermediates (M-OOH) induces sulfated Co-NiFe-LDH to exhibit excellent kinetics.
Collapse
Affiliation(s)
- Chen Qiao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zahid Usman
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan
| | - Jie Wei
- Institute of Materials Research and Shenzhen Geim Graphene Research Centre, Tsinghua Shenzhen Internation-al Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Lin Gan
- Institute of Materials Research and Shenzhen Geim Graphene Research Centre, Tsinghua Shenzhen Internation-al Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Yingying Hao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jiatao Zhang
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chuanbao Cao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
13
|
Wang Y, Li Z, Hou L, Wang Y, Zhang L, Wang T, Liu H, Liu S, Qin Q, Liu X. In Situ Activation Endows Orthorhombic Fluorite-Type Samarium Iridium Oxide with Enhanced Acidic Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892547 DOI: 10.1021/acsami.2c22102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing electrochemical catalysts for acidic water oxidation with improved activity and stability has been the key to the further popularization of proton exchange membrane electrolyzers. In this work, an orthorhombic fluorite-type samarium iridium oxide (Sm3IrO7) catalyst is synthesized by a simple solid-state reaction. After in situ activation, the as-prepared Sm3IrO7 exhibits higher mass activity and durability than that of commercial IrO2. The in-depth analyses indicate the formation of amorphous IrOx species on the surface to evolve to a new heterostructure IrOx/Sm3IrO7, along with Sm leaching during the in situ activation process. More importantly, strong electronic interactions exist between newborn IrOx species and remaining Sm3IrO7, leading to the compressed Ir-O bonds in IrOx compared to commercial IrO2, thus reducing the energy barrier for oxygen evolution reaction (OER) intermediates to improve the OER process. Based on the above-mentioned analyses, it is speculated that the actual active species for enhanced acidic water oxidation should be IrOx/Sm3IrO7, rather than Sm3IrO7 itself. Theoretical calculations confirm that the optimal energy level path of IrOx/Sm3IrO7 follows the lattice oxygen mechanism, and the energy level of surface Ir 5d orbitals is lower than O 2p orbitals in IrOx/Sm3IrO7, enabling it a superior OER activity.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, P. R. China
| | - Liqiang Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yimeng Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lijie Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Tiantian Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Huihui Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
14
|
In Situ Electroplating of Ir@Carbon Cloth as High-Performance Selective Oxygen Evolution Reaction Catalyst for Direct Electrolytic Recovery of Lead. Catalysts 2023. [DOI: 10.3390/catal13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The hydrometallurgical technology provides an efficient and sustainable green lead recovery process from lead acid batteries. Methanesulfonic acid has been widely considered as a green solvent for lead electrolytic recovery. However, the competitive precipitation of PbO2 at anode and higher overpotential for OER limit the lead recovery efficiency. In this work, an anodic oxygen evolution reaction (OER) catalyst with a low Ir mass fraction of 7.2% is obtained by electroplating iridium on carbon cloth (CC), exhibiting a lower overpotential of 256 mV, longer lifetime of 10 h, and better stability in the 0.5 M MSA solution. When CC-Ir is used as an anodic catalyst for lead recovery in the lead methanesulfonate electrolyte, only a lesser Pb precipitation product with Pb atom mass fraction of 1.42% is found after electrolysis of 10 h, demonstrating the suppression effect of CC-Ir for a PbO2 side reaction. This work proves that the anodic catalyst plays an important role in the lead electrolytic recovery process, which can inhibit the side reaction, reduce the energy consumption, and increase recovery efficiency.
Collapse
|
15
|
Study of the Kinetics of Reduction of IrO2 on TiO2 (Anatase) by Temperature-Programmed Reduction. INORGANICS 2023. [DOI: 10.3390/inorganics11020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The interaction between IrO2 and TiO2 (anatase) in non-isothermal reduction conditions has been studied by the temperature programmed reduction technique. IrO2 clusters are of sizes between 0.5 and 0.9 nm as determined from High Resolution Transmission Electron Microscopy (HRTEM). Largely, two main regions for reduction were found and modeled at ca. 100 and 230 °C. The first region is attributed to the partial reduction of IrO2 clusters, while the second one is due to reduction of the formed crystalline (rutile IrO2), during TPR, to Ir metal. Two methods for calculating kinetic parameters were tested. First, by applying different ramping rates on a 3.5 wt.% IrO2/TiO2 using Kissinger’s method. The apparent activation energy values for the first and second reduction regions were found to be ca. 35 and 100 kJ/mol, respectively. The second method was based on fitting different kinetic models for the experimental results in order to extract qualitative information on the nature of interaction during the reduction process. It was found that the first reduction is largely due to the amount of IrO2 (reactant concentration) while the second one involved phase boundary effect as well as nucleation.
Collapse
|