1
|
Chen C, Yang Z, Wang T, Wang Y, Gao K, Wu J, Wang J, Qiu J, Tan D. Ultra-broadband all-optical nonlinear activation function enabled by MoTe 2/optical waveguide integrated devices. Nat Commun 2024; 15:9047. [PMID: 39426957 PMCID: PMC11490568 DOI: 10.1038/s41467-024-53371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
All-optical nonlinear activation functions (NAFs) are crucial for enabling rapid optical neural networks (ONNs). As linear matrix computation advances in integrated ONNs, on-chip all-optical NAFs face challenges such as limited integration, high latency, substantial power consumption, and a high activation threshold. In this work, we develop an integrated nonlinear optical activator based on the butt-coupling integration of two-dimensional (2D) MoTe2 and optical waveguides (OWGs). The activator exhibits an ultra-broadband response from visible to near-infrared wavelength, a low activation threshold of 0.94 μW, a small device size (~50 µm2), an ultra-fast response rate (2.08 THz), and high-density integration. The excellent nonlinear effects and broadband response of 2D materials have been utilized to create all-optical NAFs. These activators were applied to simulate MNIST handwritten digit recognition, achieving an accuracy of 97.6%. The results underscore the potential application of this approach in ONNs. Moreover, the classification of more intricate CIFAR-10 images demonstrated a generalizable accuracy of 94.6%. The present nonlinear activator promises a general platform for three-dimensional (3D) ultra-broadband ONNs with dense integration and low activation thresholds by integrating a variety of strong nonlinear optical (NLO) materials (e.g., 2D materials) and OWGs in glass.
Collapse
Affiliation(s)
| | - Zhan Yang
- Aerospace Laser Technology and System Department, CAS Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wang
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China
| | - Yalun Wang
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China
| | - Kai Gao
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China
| | - Jiajia Wu
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China
| | - Jun Wang
- Aerospace Laser Technology and System Department, CAS Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianrong Qiu
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Dezhi Tan
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China.
- Scholl of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
2
|
Strauß F, Kohlschreiber P, Keck J, Michel P, Hiller J, Meixner AJ, Scheele M. A simple 230 MHz photodetector based on exfoliated WSe 2 multilayers. RSC APPLIED INTERFACES 2024; 1:728-733. [PMID: 38988412 PMCID: PMC11231687 DOI: 10.1039/d4lf00019f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/03/2024] [Indexed: 07/12/2024]
Abstract
We demonstrate 230 MHz photodetection and a switching energy of merely 27 fJ using WSe2 multilayers and a very simple device architecture. This improvement over previous, slower WSe2 devices is enabled by systematically reducing the RC constant of devices through decreasing the photoresistance and capacitance. In contrast to MoS2, reducing the WSe2 thickness toward a monolayer only weakly decreases the response time, highlighting that ultrafast photodetection is also possible with atomically thin WSe2. Our work provides new insights into the temporal limits of pure transition metal dichalcogenide photodetectors and suggests that gigahertz photodetection with these materials should be feasible.
Collapse
Affiliation(s)
- Fabian Strauß
- Institute for Physical and Theoretical Chemistry, University of Tübingen 72076 Tübingen Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, University of Tübingen 72076 Tübingen Germany
| | - Pia Kohlschreiber
- Institute for Physical and Theoretical Chemistry, University of Tübingen 72076 Tübingen Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, University of Tübingen 72076 Tübingen Germany
| | - Jakob Keck
- Institute for Physical and Theoretical Chemistry, University of Tübingen 72076 Tübingen Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, University of Tübingen 72076 Tübingen Germany
| | - Patrick Michel
- Institute for Physical and Theoretical Chemistry, University of Tübingen 72076 Tübingen Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, University of Tübingen 72076 Tübingen Germany
| | - Jonas Hiller
- Institute for Physical and Theoretical Chemistry, University of Tübingen 72076 Tübingen Germany
| | - Alfred J Meixner
- Institute for Physical and Theoretical Chemistry, University of Tübingen 72076 Tübingen Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, University of Tübingen 72076 Tübingen Germany
| | - Marcus Scheele
- Institute for Physical and Theoretical Chemistry, University of Tübingen 72076 Tübingen Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, University of Tübingen 72076 Tübingen Germany
| |
Collapse
|
3
|
Yu X, Ji Y, Shen X, Le X. Progress in Advanced Infrared Optoelectronic Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:845. [PMID: 38786801 PMCID: PMC11123936 DOI: 10.3390/nano14100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Infrared optoelectronic sensors have attracted considerable research interest over the past few decades due to their wide-ranging applications in military, healthcare, environmental monitoring, industrial inspection, and human-computer interaction systems. A comprehensive understanding of infrared optoelectronic sensors is of great importance for achieving their future optimization. This paper comprehensively reviews the recent advancements in infrared optoelectronic sensors. Firstly, their working mechanisms are elucidated. Then, the key metrics for evaluating an infrared optoelectronic sensor are introduced. Subsequently, an overview of promising materials and nanostructures for high-performance infrared optoelectronic sensors, along with the performances of state-of-the-art devices, is presented. Finally, the challenges facing infrared optoelectronic sensors are posed, and some perspectives for the optimization of infrared optoelectronic sensors are discussed, thereby paving the way for the development of future infrared optoelectronic sensors.
Collapse
Affiliation(s)
- Xiang Yu
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Yun Ji
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Xinyi Shen
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Xiaoyun Le
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Wang XX, Zeng G, Yu QJ, Shen L, Shi CY, Lu HL. Photodetectors integrating waveguides and semiconductor materials. NANOSCALE 2024. [PMID: 38410877 DOI: 10.1039/d4nr00305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Photodetectors integrating substrates and semiconductor materials are increasingly attractive for applications in optical communication, optical sensing, optical computing, and military owing to the unique optoelectronic properties of semiconductor materials. However, it is still a challenge to realize high-performance photodetectors by only integrating substrates and semiconductor materials because of the limitation of incident light in contact with sensitive materials. In recent years, waveguides such as silicon (Si) and silicon nitride (Si3N4) have attracted extensive attention owing to their unique optical properties. Waveguides can be easily hetero-integrated with semiconductor materials, thus providing a promising approach for realizing high-performance photodetectors. Herein, we review recent advances in photodetectors integrating waveguides in two parts. The first involves the waveguide types and semiconductor materials commonly used to fabricate photodetectors, including Si, Si3N4, gallium nitride, organic waveguides, graphene, and MoTe2. The second involves the photodetectors of different wavelengths that integrate waveguides, ranging from ultraviolet to infrared. These hybrid photodetectors integrating waveguides and semiconductor materials provide an alternative way to realize multifunctional and high-performance photonic integrated chips and circuits.
Collapse
Affiliation(s)
- Xin-Xue Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
| | - Guang Zeng
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
| | - Qiu-Jun Yu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
| | - Lei Shen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
| | - Cai-Yu Shi
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
- Jiashan Fudan Institute, Jiaxing, Zhejiang Province 314100, China
| |
Collapse
|
5
|
Wang J, Han N, Lin Z, Hu S, Tian R, Zhang M, Zhang Y, Zhao J, Gan X. A giant intrinsic photovoltaic effect in atomically thin ReS 2. NANOSCALE 2024; 16:3101-3106. [PMID: 38250820 DOI: 10.1039/d3nr05355e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The photovoltaic (PV) effect in non-centrosymmetric materials consisting of a single component under homogeneous illumination can exceed the fundamental Shockley-Queisser limit compared to the traditional p-n junctions. Two-dimensional (2D) materials with a reduced dimensionality and smaller bandgap were predicated to be better candidates for the PV effect with high efficiency exceeding that of traditional ferroelectric perovskite oxides. Here, we report the giant intrinsic PV effect in atomically thin rhenium disulfide (ReS2) with centrosymmetry breaking. In graphene/ReS2/graphene sandwich structures, significant short-circuit currents (Isc) were observed with illumination over the visible spectral range, presenting the highest responsivity (110 mA W-1) and external quantum efficiency (25.7%) among those reported PV effects in 2D materials. This giant PV effect could be ascribed to the spontaneous-polarization induced depolarization field in even-number-layered ReS2 flakes benefiting from the distorted 1T lattice structure. Our results provide a new potential candidate material for the development of novel high-efficiency, miniaturized and easily integrated photodetectors and solar cells.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Nannan Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zhihua Lin
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Siqi Hu
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Ruijuan Tian
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Mingwen Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Yu Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Jianlin Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
6
|
Jiang J, Xu W, Guo F, Yang S, Ge W, Shen B, Tang N. Polarization-Resolved Near-Infrared PdSe 2 p-i-n Homojunction Photodetector. NANO LETTERS 2023; 23:9522-9528. [PMID: 37823381 DOI: 10.1021/acs.nanolett.3c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Constructing high-quality homojunctions plays a pivotal role for the advancement of two-dimensional transition metal sulfide (TMDC) based optoelectronic devices. Here, a lateral PdSe2 p-i-n homojunction is constructed by electrostatic doping. Electrical measurements reveal that the homojunction diode exhibits a strong rectifying characteristic with a rectification ratio exceeding 104 and an ideality factor approaching 1. When functioning in photovoltaic mode, the device achieves a high responsivity of 1.1 A/W under 1064 nm illumination, with a specific detectivity of 1.3 × 1011 Jones and a high linearity of 45 dB. Benefiting from the lateral p-i-n structure, the junction capacitance is significantly reduced, and an ultrafast response (3/6 μs) is obtained. Additionally, the photodiode has the capability of polarization distinction due to the unique in-plane anisotropic structure of PdSe2, exhibiting a dichroic ratio of 1.6 at a 1064 nm wavelength. This high-performance polarization-sensitive near-infrared photodetector exhibits great potential in the next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Jiayang Jiang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Weiting Xu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Fuqiang Guo
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Shengxue Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Weikun Ge
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Bo Shen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Ning Tang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| |
Collapse
|
7
|
Zhang Q, Zhao B, Hu S, Tian R, Li C, Fang L, Zhang Y, Liu Y, Zhao J, Gan X. A waveguide-integrated self-powered van der Waals heterostructure photodetector with high performance at the telecom wavelength. NANOSCALE 2023; 15:15761-15767. [PMID: 37740350 DOI: 10.1039/d3nr02520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Two-dimensional (2D) materials are attractive candidates for high-performance photodetectors due to their wide operating wavelength and potential to integrate with silicon photonics. However, due to their limited atomic thickness and short carrier lifetime, they suffer from high driving source-drain voltages, weak light-matter interactions and low carrier collection efficiency. Here, we present a high-performance van der Waals (vdWs) heterostructure-based photodetector integrated on a silicon nitride photonic platform combining p-type black phosphorus (BP) and n-type molybdenum disulfide (MoS2). Owing to the efficient carrier separation process and dark current suppression at the junction interface of the vdWs heterostructure, high photodetectivity and a fast response speed can be achieved. A fast response time (∼2.08/3.54 μs), high responsivity (11.26 mA W-1), and a high light on/off ratio (104) operating in the near-infrared telecom band are obtained at zero bias. Our research highlights the great potential of the high-efficiency waveguide-integrated vdWs heterojunction photodetector for integrated optoelectronic systems, such as high-data-rate interconnects operated at standardized telecom wavelengths.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Bijun Zhao
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Siqi Hu
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Ruijuan Tian
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Chen Li
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Liang Fang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Yong Zhang
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yan Liu
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Jianlin Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710129, China.
| |
Collapse
|
8
|
Wang C, Wu Q, Ding Y, Zhang X, Wang W, Guo X, Ni Z, Lin L, Cai Z, Gu X, Xiao S, Nan H. High-Responsivity and Broadband MoS 2 Photodetector Using Interfacial Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46236-46246. [PMID: 37729386 DOI: 10.1021/acsami.3c09322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Combining MoS2 with mature silicon technology is an effective method for preparing high-performance photodetectors. However, the previously studied MoS2/silicon-based heterojunction photodetectors cannot simultaneously demonstrate high responsivity, a fast response time, and broad spectral detection. We constructed a broad spectral n-type MoS2/p-type silicon-based heterojunction photodetector. The SiO2 dielectric layer on the silicon substrate was pretreated with soft plasma to change its thickness and surface state. The pretreated SiO2 dielectric layer and the silicon substrate constitute a multilayer heterostructure with a high carrier concentration and responsiveness. Taking silicon-based and n-type MoS2 heterojunction photodetectors as examples, its responsivity can reach 4.05 × 104 A W1- at 637 nm wavelength with a power density of 2 μW mm-2, and the detectable spectral range is measured from 447 to 1600 nm. This pretreated substrate was proven applicable to other n-type TMDCs, such as MoTe2, ReS2, etc., with certain versatility.
Collapse
Affiliation(s)
- Chenglin Wang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Qianqian Wu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Yang Ding
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiumei Zhang
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Wenhui Wang
- School of Physics and Key Laboratory of MEMS of the Ministry of Education Southeast University, Nanjing 21189, China
| | - Xitao Guo
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China
| | - Zhenhua Ni
- School of Physics and Key Laboratory of MEMS of the Ministry of Education Southeast University, Nanjing 21189, China
| | - Liangliang Lin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhengyang Cai
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Haiyan Nan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|