1
|
Dong M, Zhang Y, Zhu J, Zhu X, Zhao J, Zhao Q, Sun L, Sun Y, Yang F, Hu W. All-in-One 2D Molecular Crystal Optoelectronic Synapse for Polarization-Sensitive Neuromorphic Visual System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409550. [PMID: 39188186 DOI: 10.1002/adma.202409550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Neuromorphic visual systems (NVSs) hold the potential to not only preserve but also enhance human visual capabilities. One such augmentation lies in harnessing polarization information from light reflected or scattered off surfaces like bees, which can disclose unique characteristics imperceptible to the human eyes. While creating polarization-sensitive optoelectronic synapses presents an intriguing avenue for equipping NVS with this capability, integrating functions like polarization sensitivity, photodetection, and synaptic operations into a singular device has proven challenging. This integration typically necessitates distinct functional components for each performance metric, leading to intricate fabrication processes and constraining overall performance. Herein, a pioneering linear polarized light sensitive synaptic organic phototransistor (OPT) based on 2D molecular crystals (2DMCs) with highly integrated, all-in-one functionality, is demonstrated. By leveraging the superior crystallinity and molecular thinness of 2DMC, the synaptic OPT exhibits comprehensive superior performance, including a linear dichroic ratio up to 3.85, a high responsivity of 1.47 × 104 A W-1, and the adept emulation of biological synapse functions. A sophisticated application in noncontact fingerprint detection achieves a 99.8% recognition accuracy, further highlights its potential. The all-in-one 2DMC optoelectronic synapse for polarization-sensitive NVS marks a new era for intelligent perception systems.
Collapse
Affiliation(s)
- Meiqiu Dong
- Ji Hua Laboratory, Foshan, Guangdong, 52800, P. R. China
| | - Yu Zhang
- Ji Hua Laboratory, Foshan, Guangdong, 52800, P. R. China
| | - Jie Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiaoting Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jinjin Zhao
- Department of Physics, Shanxi Datong University, Datong, 037009, China
| | - Qiang Zhao
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Lingjie Sun
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yajing Sun
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Fangxu Yang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Li J, Liu C, Han X, Tian M, Jiang B, Li W, Ou C, Dou N, Han Z, Ji T, Cao X, Zhong X, Zhang L. Supramolecular Electronics: Monolayer Assembly of Nonamphiphilic Molecules via Water Surface-Assisted Molecular Deposition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48438-48447. [PMID: 39109880 DOI: 10.1021/acsami.4c05552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Utilizing softly confined self-assembly at the water surface represents a promising approach for the fabrication of two-dimensional molecular monolayers (2D MMs), which have predominantly been concentrated on amphiphilic organic compounds before. Herein, we introduce a straightforward method termed "water surface-assisted molecular deposition (WSAMD)" to organize nonamphiphilic molecules into dense monolayers with high reproducibility. To underscore the versatility and merit of this methodology in the field of supramolecular electronics, we have successfully fabricated a range of defect-free, uniform semiconducting polymer monolayers, featuring a thickness reflective of molecular architectures. The charge carrier mobility could reach 0.05 cm2 V-1 s-1 for holes and 3.5 × 10-4 cm2 V-1 s-1 for electrons, respectively, in p-type and n-type polymeric monolayers when tested as the active layer in field-effect transistors. Furthermore, in situ polymerization reactions can be exploited to generate conductive monolayers of macromolecules such as polybenzylaniline (PBnANI) and polypyrrole (PPy), where PBnANI monolayers exhibit channel length-dependent conductivity, up to 0.37 S cm-1. The advent of the WSAMD method heralds a significant leap forward in the advancement of molecular 2D materials, catalyzing new avenues of exploration within material chemistry.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chuanhui Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao Han
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Menghan Tian
- School of Physics, Beihang University, Beijing 100191, China
| | - Baichuan Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenbin Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Cailing Ou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Nannan Dou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zixiao Han
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tingyu Ji
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoru Cao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Zhong
- School of Physics, Beihang University, Beijing 100191, China
| | - Lei Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
3
|
Guo T, Li S, Zhou YN, Lu WD, Yan Y, Wu YA. Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition. Nat Commun 2024; 15:6731. [PMID: 39112546 PMCID: PMC11306562 DOI: 10.1038/s41467-024-51178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Cutting-edge humanoid machine vision merely mimics human systems and lacks polarimetric functionalities that convey the information of navigation and authentic images. Interspecies-chimera vision reserving multiple hosts' capacities will lead to advanced machine vision. However, implementing the visual functions of multiple species (human and non-human) in one optoelectronic device is still elusive. Here, we develop an optically-controlled polarimetry memtransistor based on a van der Waals heterostructure (ReS2/GeSe2). The device provides polarization sensitivity, nonvolatility, and positive/negative photoconductance simultaneously. The polarimetric measurement can identify celestial polarizations for real-time navigation like a honeybee. Meanwhile, cognitive tasks can be completed like a human by sensing, memory, and synaptic functions. Particularly, the anti-glare recognition with polarimetry saves an order of magnitude energy compared to the traditional humanoid counterpart. This technique promotes the concept of interspecies-chimera visual systems that will leverage the advances of autonomous vehicles, medical diagnoses, intelligent robotics, etc.
Collapse
Affiliation(s)
- Tao Guo
- School of Physics, Henan Normal University, Henan, 453007, China
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Shasha Li
- School of Physics, Henan Normal University, Henan, 453007, China
| | - Y Norman Zhou
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Wei D Lu
- Department of Electrical and Computer Engineering, the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Yan
- School of Physics, Henan Normal University, Henan, 453007, China.
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- iGaN Laboratory, School of Microelectronics, University of Science and Technology ofChina Hefei, Anhui, 230026, China.
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
4
|
Sui N, Ji Y, Li M, Zheng F, Shao S, Li J, Liu Z, Wu J, Zhao J, Li L. Photoprogrammed Multifunctional Optoelectronic Synaptic Transistor Arrays Based on Photosensitive Polymer-Sorted Semiconducting Single-Walled Carbon Nanotubes for Image Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401794. [PMID: 38828719 PMCID: PMC11304235 DOI: 10.1002/advs.202401794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Indexed: 06/05/2024]
Abstract
The development of neuromorphic optoelectronic systems opens up the possibility of the next generation of artificial vision. In this work, the novel broadband (from 365 to 940 nm) and multilevel storage optoelectronic synaptic thin-film transistor (TFT) arrays are reported using the photosensitive conjugated polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(bithiophene)], F8T2) sorted semiconducting single-walled carbon nanotubes (sc-SWCNTs) as channel materials. The broadband synaptic responses are inherited to absorption from both photosensitive F8T2 and sorted sc-SWCNTs, and the excellent optoelectronic synaptic behaviors with 200 linearly increasing conductance states and long retention time > 103 s are attributed to the superior charge trapping at the AlOx dielectric layer grown by atomic layer deposition. Furthermore, the synaptic TFTs can achieve IOn/IOff ratios up to 106 and optoelectronic synaptic plasticity with the low power consumption (59 aJ per single pulse), which can simulate not only basic biological synaptic functions but also optical write and electrical erase, multilevel storage, and image recognition. Further, a novel Spiking Neural Network algorithm based on hardware characteristics is designed for the recognition task of Caltech 101 dataset and multiple features of the images are successfully extracted with higher accuracy (97.92%) of the recognition task from the multi-frequency curves of the optoelectronic synaptic devices.
Collapse
Affiliation(s)
- Nianzi Sui
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaNo. 398 Ruoshui Road, Suzhou Industrial ParkSuzhouJiangsu Province215123P. R. China
- Division of Nanodevices and Related NanomaterialsSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesNo. 398 Ruoshui Road, Suzhou Industrial ParkSuzhouJiangsu Province215123P. R. China
| | - Yixi Ji
- School of Artificial IntelligenceXidian UniversityXi'an710071P. R. China
| | - Min Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaNo. 398 Ruoshui Road, Suzhou Industrial ParkSuzhouJiangsu Province215123P. R. China
- Division of Nanodevices and Related NanomaterialsSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesNo. 398 Ruoshui Road, Suzhou Industrial ParkSuzhouJiangsu Province215123P. R. China
| | - Fanyuan Zheng
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| | - Shuangshuang Shao
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaNo. 398 Ruoshui Road, Suzhou Industrial ParkSuzhouJiangsu Province215123P. R. China
- Division of Nanodevices and Related NanomaterialsSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesNo. 398 Ruoshui Road, Suzhou Industrial ParkSuzhouJiangsu Province215123P. R. China
| | - Jiaqi Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaNo. 398 Ruoshui Road, Suzhou Industrial ParkSuzhouJiangsu Province215123P. R. China
- Division of Nanodevices and Related NanomaterialsSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesNo. 398 Ruoshui Road, Suzhou Industrial ParkSuzhouJiangsu Province215123P. R. China
| | - Zhaoxin Liu
- School of Artificial IntelligenceXidian UniversityXi'an710071P. R. China
| | - Jinjian Wu
- School of Artificial IntelligenceXidian UniversityXi'an710071P. R. China
| | - Jianwen Zhao
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaNo. 398 Ruoshui Road, Suzhou Industrial ParkSuzhouJiangsu Province215123P. R. China
- Division of Nanodevices and Related NanomaterialsSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesNo. 398 Ruoshui Road, Suzhou Industrial ParkSuzhouJiangsu Province215123P. R. China
| | - Lain‐Jong Li
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| |
Collapse
|
5
|
Zhang T, Fan C, Hu L, Zhuge F, Pan X, Ye Z. A Reconfigurable All-Optical-Controlled Synaptic Device for Neuromorphic Computing Applications. ACS NANO 2024; 18:16236-16247. [PMID: 38868857 DOI: 10.1021/acsnano.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Retina-inspired visual sensors play a crucial role in the realization of neuromorphic visual systems. Nevertheless, significant obstacles persist in the pursuit of achieving bidirectional synaptic behavior and attaining high performance in the context of photostimulation. In this study, we propose a reconfigurable all-optical controlled synaptic device based on the IGZO/SnO/SnS heterostructure, which integrates sensing, storage and processing functions. Relying on the simple heterojunction stack structure and the role of energy band engineering, synaptic excitatory and inhibitory behaviors can be observed under the light stimulation of ultraviolet (266 nm) and visible light (405, 520 and 658 nm) without additional voltage modulation. In particular, junction field-effect transistors based on the IGZO/SnO/SnS heterostructure were fabricated to elucidate the underlying bidirectional photoresponse mechanism. In addition to optical signal processing, an artificial neural network simulator based on the optoelectrical synapse was trained and recognized handwritten numerals with a recognition rate of 91%. Furthermore, we prepared an 8 × 8 optoelectrical synaptic array and successfully demonstrated the process of perception and memory for image recognition in the human brain, as well as simulated the situation of damage to the retina by ultraviolet light. This work provides an effective strategy for the development of high-performance all-optical controlled optoelectronic synapses and a practical approach to the design of multifunctional artificial neural vision systems.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chao Fan
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Lingxiang Hu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Fei Zhuge
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xinhua Pan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| |
Collapse
|
6
|
Lu B, Stolte M, Liu D, Zhang X, Zhao L, Tian L, Frisbie CD, Würthner F, Tao X, He T. High Sensitivity and Ultra-Broad-Range NH 3 Sensor Arrays by Precise Control of Step Defects on The Surface of Cl 2-Ndi Single Crystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308036. [PMID: 38308194 PMCID: PMC11005746 DOI: 10.1002/advs.202308036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Indexed: 02/04/2024]
Abstract
Vapor sensors with both high sensitivity and broad detection range are technically challenging yet highly desirable for widespread chemical sensing applications in diverse environments. Generally, an increased surface-to-volume ratio can effectively enhance the sensitivity to low concentrations, but often with the trade-off of a constrained sensing range. Here, an approach is demonstrated for NH3 sensor arrays with an unprecedentedly broad sensing range by introducing controllable steps on the surface of an n-type single crystal. Step edges, serving as adsorption sites with electron-deficient properties, are well-defined, discrete, and electronically active. NH3 molecules selectively adsorb at the step edges and nearly eliminate known trap-like character, which is demonstrated by surface potential imaging. Consequently, the strategy can significantly boost the sensitivity of two-terminal NH3 resistance sensors on thin crystals with a few steps while simultaneously enhancing the tolerance on thick crystals with dense steps. Incorporation of these crystals into parallel sensor arrays results in ppb-to-% level detection range and a convenient linear relation between sheet conductance and semi-log NH3 concentration, allowing for the precise localization of vapor leakage. In general, the results suggest new opportunities for defect engineering of organic semiconductor crystal surfaces for purposeful vapor or chemical sensing.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Matthias Stolte
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
| | - Dong Liu
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Xiaojing Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Lihui Zhao
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Liehao Tian
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - C. Daniel Frisbie
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesota55455USA
| | - Frank Würthner
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
| | - Xutang Tao
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Tao He
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
7
|
Chen H, Cai Y, Han Y, Huang H. Towards Artificial Visual Sensory System: Organic Optoelectronic Synaptic Materials and Devices. Angew Chem Int Ed Engl 2024; 63:e202313634. [PMID: 37783656 DOI: 10.1002/anie.202313634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Developing an artificial visual sensory system requires optoelectronic materials and devices that can mimic the behavior of biological synapses. Organic/polymeric semiconductors have emerged as promising candidates for optoelectronic synapses due to their tunable optoelectronic properties, mechanic flexibility, and biological compatibility. In this review, we discuss the recent progress in organic optoelectronic synaptic materials and devices, including their design principles, working mechanisms, and applications. We also highlight the challenges and opportunities in this field and provide insights into potential applications of these materials and devices in next-generation artificial visual systems. By leveraging the advances in organic optoelectronic materials and devices, we can envision its future development in artificial intelligence.
Collapse
Affiliation(s)
- Hao Chen
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yinghui Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Fan A, Xu T, Teng G, Wang X, Zhang Y, Xu C, Xu X, Li J. Full-Stokes polarization multispectral images of various stereoscopic objects. Sci Data 2023; 10:328. [PMID: 37244913 DOI: 10.1038/s41597-023-02184-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023] Open
Abstract
Polarization multispectral imaging (PMI) has been applied widely with the ability of characterizing physicochemical properties of objects. However, traditional PMI relies on scanning each domain, which is time-consuming and occupies vast storage resources. Therefore, it is imperative to develop advanced PMI methods to facilitate real-time and cost-effective applications. In addition, PMI development is inseparable from preliminary simulations based on full-Stokes polarization multispectral images (FSPMI). Whereas, FSPMI measurements are always necessary due to the lack of relevant databases, which is extremely complex and severely limits PMI development. In this paper, we therefore publicize abundant FSPMI with 512 × 512 spatial pixels measured by an established system for 67 stereoscopic objects. In the system, a quarter-wave plate and a linear polarizer are rotated to modulate polarization information, while bandpass filters are switched to modulate spectral information. The required FSPMI are finally calculated from designed 5 polarization modulation and 18 spectral modulation. The publicly available FSPMI database may have the potential to greatly promote PMI development and application.
Collapse
Affiliation(s)
- Axin Fan
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401151, China
| | - Tingfa Xu
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401151, China.
| | - Geer Teng
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK
| | - Xi Wang
- School of Printing & Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Yuhan Zhang
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401151, China
| | - Chang Xu
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Xu
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401151, China
| | - Jianan Li
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|