1
|
Kravtsov M, Shilov AL, Yang Y, Pryadilin T, Kashchenko MA, Popova O, Titova M, Voropaev D, Wang Y, Shein K, Gayduchenko I, Goltsman GN, Lukianov M, Kudriashov A, Taniguchi T, Watanabe K, Svintsov DA, Adam S, Novoselov KS, Principi A, Bandurin DA. Viscous terahertz photoconductivity of hydrodynamic electrons in graphene. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01795-y. [PMID: 39375523 DOI: 10.1038/s41565-024-01795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024]
Abstract
Light incident upon materials can induce changes in their electrical conductivity, a phenomenon referred to as photoresistance. In semiconductors, the photoresistance is negative, as light-induced promotion of electrons across the bandgap enhances the number of charge carriers participating in transport. In superconductors and normal metals, the photoresistance is positive because of the destruction of the superconducting state and enhanced momentum-relaxing scattering, respectively. Here we report a qualitative deviation from the standard behaviour in doped metallic graphene. We show that Dirac electrons exposed to continuous-wave terahertz (THz) radiation can be thermally decoupled from the lattice, which activates hydrodynamic electron transport. In this regime, the resistance of graphene constrictions experiences a decrease caused by the THz-driven superballistic flow of correlated electrons. We analyse the dependencies of the negative photoresistance on the carrier density, and the radiation power, and show that our superballistic devices operate as sensitive phonon-cooled bolometers and can thus offer, in principle, a picosecond-scale response time. Beyond their fundamental implications, our findings underscore the practicality of electron hydrodynamics in designing ultra-fast THz sensors and electron thermometers.
Collapse
Affiliation(s)
- M Kravtsov
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
| | - A L Shilov
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Programmable Functional Materials Lab, Center for Neurophysics and Neuromorphic Technologies, Moscow, Russia
| | - Y Yang
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
| | - T Pryadilin
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - M A Kashchenko
- Programmable Functional Materials Lab, Center for Neurophysics and Neuromorphic Technologies, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - O Popova
- Programmable Functional Materials Lab, Center for Neurophysics and Neuromorphic Technologies, Moscow, Russia
| | - M Titova
- Programmable Functional Materials Lab, Center for Neurophysics and Neuromorphic Technologies, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - D Voropaev
- Programmable Functional Materials Lab, Center for Neurophysics and Neuromorphic Technologies, Moscow, Russia
| | - Y Wang
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
| | - K Shein
- Moscow Pedagogical State University, Moscow, Russia
- National Research University Higher School of Economics, Moscow, Russia
| | - I Gayduchenko
- Moscow Pedagogical State University, Moscow, Russia
- National Research University Higher School of Economics, Moscow, Russia
| | - G N Goltsman
- Moscow Pedagogical State University, Moscow, Russia
- National Research University Higher School of Economics, Moscow, Russia
| | - M Lukianov
- Programmable Functional Materials Lab, Center for Neurophysics and Neuromorphic Technologies, Moscow, Russia
| | - A Kudriashov
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Programmable Functional Materials Lab, Center for Neurophysics and Neuromorphic Technologies, Moscow, Russia
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute of Material Science, Tsukuba, Japan
| | - K Watanabe
- Research Center for Functional Materials, National Institute of Material Science, Tsukuba, Japan
| | - D A Svintsov
- Moscow Center for Advanced Studies, Moscow, Russia
| | - S Adam
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
| | - K S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
| | - A Principi
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - D A Bandurin
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Abdullah M, Younis M, Sohail MT, Wu S, Zhang X, Khan K, Asif M, Yan P. Recent Progress of 2D Materials-Based Photodetectors from UV to THz Waves: Principles, Materials, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402668. [PMID: 39235584 DOI: 10.1002/smll.202402668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Photodetectors are one of the most critical components for future optoelectronic systems and it undergoes significant advancements to meet the growing demands of diverse applications spanning the spectrum from ultraviolet (UV) to terahertz (THz). 2D materials are very attractive for photodetector applications because of their distinct optical and electrical properties. The atomic-thin structure, high carrier mobility, low van der Waals (vdWs) interaction between layers, relatively narrower bandgap engineered through engineering, and significant absorption coefficient significantly benefit the chip-scale production and integration of 2D materials-based photodetectors. The extremely sensitive detection at ambient temperature with ultra-fast capabilities is made possible with the adaptability of 2D materials. Here, the recent progress of photodetectors based on 2D materials, covering the spectrum from UV to THz is reported. In this report, the interaction of light with 2D materials is first deliberated on in terms of optical physics. Then, various mechanisms on which detectors work, important performance parameters, important and fruitful fabrication methods, fundamental optical properties of 2D materials, various types of 2D materials-based detectors, different strategies to improve performance, and important applications of photodetectors are discussed.
Collapse
Affiliation(s)
- Muhammad Abdullah
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Younis
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Tahir Sohail
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shifang Wu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiong Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Karim Khan
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Asif
- THz Technical Research Center of Shenzhen University, Shenzhen Key Laboratory of Micro-nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peiguang Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
3
|
Abidi E, Khan A, Delgado-Notario JA, Clericó V, Calvo-Gallego J, Taniguchi T, Watanabe K, Otsuji T, Velázquez JE, Meziani YM. Terahertz Detection by Asymmetric Dual Grating Gate Bilayer Graphene FETs with Integrated Bowtie Antenna. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:383. [PMID: 38392756 PMCID: PMC10891749 DOI: 10.3390/nano14040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
An asymmetric dual-grating gate bilayer graphene-based field effect transistor (ADGG-GFET) with an integrated bowtie antenna was fabricated and its response as a Terahertz (THz) detector was experimentally investigated. The device was cooled down to 4.5 K, and excited at different frequencies (0.15, 0.3 and 0.6 THz) using a THz solid-state source. The integration of the bowtie antenna allowed to obtain a substantial increase in the photocurrent response (up to 8 nA) of the device at the three studied frequencies as compared to similar transistors lacking the integrated antenna (1 nA). The photocurrent increase was observed for all the studied values of the bias voltage applied to both the top and back gates. Besides the action of the antenna that helps the coupling of THz radiation to the transistor channel, the observed enhancement by nearly one order of magnitude of the photoresponse is also related to the modulation of the hole and electron concentration profiles inside the transistor channel by the bias voltages imposed to the top and back gates. The creation of local n and p regions leads to the formation of homojuctions (np, pn or pp+) along the channel that strongly affects the overall photoresponse of the detector. Additionally, the bias of both back and top gates could induce an opening of the gap of the bilayer graphene channel that would also contribute to the photocurrent.
Collapse
Affiliation(s)
- E. Abidi
- Nanotech Group, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain; (A.K.); (J.A.D.-N.); (V.C.); (J.C.-G.); (J.E.V.)
| | - A. Khan
- Nanotech Group, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain; (A.K.); (J.A.D.-N.); (V.C.); (J.C.-G.); (J.E.V.)
| | - J. A. Delgado-Notario
- Nanotech Group, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain; (A.K.); (J.A.D.-N.); (V.C.); (J.C.-G.); (J.E.V.)
| | - V. Clericó
- Nanotech Group, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain; (A.K.); (J.A.D.-N.); (V.C.); (J.C.-G.); (J.E.V.)
| | - J. Calvo-Gallego
- Nanotech Group, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain; (A.K.); (J.A.D.-N.); (V.C.); (J.C.-G.); (J.E.V.)
| | - T. Taniguchi
- National Institute of Material Sciences, 1-1 Namiki, Tsukuba 305-0044, Japan; (T.T.); (K.W.)
| | - K. Watanabe
- National Institute of Material Sciences, 1-1 Namiki, Tsukuba 305-0044, Japan; (T.T.); (K.W.)
| | - T. Otsuji
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan;
| | - J. E. Velázquez
- Nanotech Group, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain; (A.K.); (J.A.D.-N.); (V.C.); (J.C.-G.); (J.E.V.)
| | - Y. M. Meziani
- Nanotech Group, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain; (A.K.); (J.A.D.-N.); (V.C.); (J.C.-G.); (J.E.V.)
| |
Collapse
|