1
|
Gao S, Li L, Wu Y, Lu C. Laser-Induced Solid-Phase Strategy to Synthesize Single-Atomic Lithiophilic Sites Enabled Dendrite-Free Lithium Deposition on Graphene Matrix. SMALL METHODS 2024:e2400503. [PMID: 39358928 DOI: 10.1002/smtd.202400503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/08/2024] [Indexed: 10/04/2024]
Abstract
The introduction of metal Single-atom (SA) to construct lithium-philic active sites shows the ability to guide uniform lithium deposition and improve the stability of lithium hosts. Nevertheless, the development of facile and expedient methods for synthesizing SA remains a considerable challenge. Herein, The SA metal loaded on graphene (Bi@LrGO) is designed by laser-induced solid-phase strategy. The bismuth salts simultaneously decompose under the high local temperature and in the reductive atmosphere induced by laser to form SA metal. Simultaneously, graphene oxide (GO) nanosheets absorb photon energy to be reduced/graphitized into graphene, which serves as anchoring sites for Bismuth Sing-atom (Bi SA) immobilization. The SA metals, supported on the graphene not only provide sufficient lithiophilic sites but also significantly increase the adsorption energy (-2.11 eV) with lithium atoms, promote the uniform nucleation and deposition of lithium, and inhibit the growth of lithium dendrites. Additionally, the layered structure of the graphene film adapts to the volume change during the repeated lithium plating/stripping process. Therefore, the symmetrical battery-based Li deposited on Bi@LrGO (Bi@LrGO@Li) achieves an ultra-long stable cycle life of ≈2400 h at 1 mA cm-2. In particular, a full cell with LiFePO4 cathode provides a good capacity retention of 81.2% at 4 C after 600 cycles.
Collapse
Affiliation(s)
- ShuaiYu Gao
- Dalian University, Dalian, 116622, P. R. China
| | - Lin Li
- Dalian University, Dalian, 116622, P. R. China
| | - Yingbin Wu
- Dalian University, Dalian, 116622, P. R. China
| | - Chunlan Lu
- Dalian University, Dalian, 116622, P. R. China
| |
Collapse
|
2
|
Mao T, Chen J, Wang R, Yang Z, Han X, Huang J, Dong S, Wang J, Jin H, Wang S. Constructing a Stable Built-In Electric Field in Bi/Bi 2Te 3 Nanowires for Electrochemical CO 2 Reduction Reaction. Inorg Chem 2024; 63:10809-10816. [PMID: 38813764 DOI: 10.1021/acs.inorgchem.4c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Electrochemically converting carbon dioxide (CO2) into valuable fuels and renewable chemical feedstocks is considered a highly promising approach to achieve carbon neutrality. In this work, a robust interfacial built-in electric field (BEF) has been successfully designed and created in Bi/Bi2Te3 nanowires (NWs). The Bi/Bi2Te3 NWs consistently maintain over 90% Faradaic efficiency (FE) within a wide potential range (-0.8 to -1.2 V), with HCOOH selectivity reaching 97.2% at -1.0 V. Moreover, the FEHCOOH of Bi/Bi2Te3 NWs can still reach 94.3% at a current density of 100 mA cm-2 when it is used as a cathode electrocatalyst in a flow-cell system. Detailed in situ experiments confirm that the presence of interfacial BEF between Bi and Bi/Bi2Te3 promotes the formation of *OHCO intermediates, thus facilitating the production of HCOOH species. DFT calculations show that Bi/Bi2Te3 NWs increase the formation energies of H* and *COOH while reducing the energy barrier for *OCHO formation, thus achieving a bidirectional optimization of intermediate adsorption. This work provides a feasible scheme for exploring electrocatalytic reaction intermediates by using the BEF strategy.
Collapse
Affiliation(s)
- Tingjie Mao
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jiadong Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Ren Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zhenrui Yang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiang Han
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jinglian Huang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Siyuan Dong
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Juan Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
3
|
Santra S, Streibel V, Wagner LI, Cheng N, Ding P, Zhou G, Sirotti E, Kisslinger R, Rieth T, Zhang S, Sharp ID. Tuning Carbon Dioxide Reduction Reaction Selectivity of Bi Single-Atom Electrocatalysts with Controlled Coordination Environments. CHEMSUSCHEM 2024; 17:e202301452. [PMID: 38224562 DOI: 10.1002/cssc.202301452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Control over product selectivity of the electrocatalytic CO2 reduction reaction (CO2RR) is a crucial challenge for the sustainable production of carbon-based chemical feedstocks. In this regard, single-atom catalysts (SACs) are promising materials due to their tunable coordination environments, which could enable tailored catalytic activities and selectivities, as well as new insights into structure-activity relationships. However, direct evidence for selectivity control via systematic tuning of the SAC coordination environment is scarce. In this work, we have synthesized two differently coordinated Bi SACs anchored to the same host material (carbon black) and characterized their CO2RR activities and selectivities. We find that oxophilic, oxygen-coordinated Bi atoms produce HCOOH, while nitrogen-coordinated Bi atoms generate CO. Importantly, use of the same support material assured that alternation of the coordination environment is the dominant factor for controlling the CO2RR product selectivity. Overall, this work demonstrates the structure-activity relationship of Bi SACs, which can be utilized to establish control over CO2RR product distributions, and highlights the promise for engineering atomic coordination environments of SACs to tune reaction pathways.
Collapse
Affiliation(s)
- Saswati Santra
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Verena Streibel
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Laura I Wagner
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Ningyan Cheng
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Pan Ding
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Guanda Zhou
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Elise Sirotti
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Ryan Kisslinger
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Tim Rieth
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Siyuan Zhang
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Ian D Sharp
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
4
|
He C, Xu C, Zhang W. Instructive Synergistic Effect of Coordinating Phosphorus in Transition-Metal-Doped β-Phosphorus Carbide Guiding the Design of High-Performance CO 2RR Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38035402 DOI: 10.1021/acsami.3c12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Developing efficient electrocatalysts for the CO2 reduction reaction (CO2RR) is the key and difficult point to alleviate energy and climate issues. The synergistic catalytic effects between metal and nonmetal elements have gained attention for the design of the CO2RR electrocatalysts. The realization of this effect requires a suitable combination of metal and nonmetal elements, as well as the support of suitable substrates. Based on this, the transition-metal-doped β-phosphorus carbide (TM-PC) (TM = 4d and 5d transition metals except Tc) catalysts are designed, and their structures, electronic properties, and CO2RR catalytic performances are studied in depth via first-principle calculations. The strong bonding ability and high reactivity brought by the moderate electronegativity and abundant electrons and orbitals of phosphorus are the key to the excellent catalytic performance of TM-PCs. Coordinating phosphorus atoms improve the catalyst activity in two ways: (1) regulating the electron transfer of the TM active site, and (2) acting as the active site and changing the reaction mechanism. With the participation of coordinating P atoms, the "relay" of active sites reduces the limiting potential values for the reduction from CO2 to CH4 catalyzed by Cr-PC and Mo-PC by 0.27 and 0.23 V, respectively, compared with pathways where only the TM atom is the active site, reaching -0.55 and -0.63 V, respectively. Regarding the coordinating P atom as the second active site, Cr-PC and Mo-PC can catalyze the production of CH3CH2OH at limiting potential values of -0.54 and -0.67 V, respectively. This study demonstrates the dramatic enhancement of catalytic activity caused by suitable nonmetal coordinating atoms such as P and provides a reference for the design of high-performance CO2RR electrocatalysts based on metal-nonmetal coordinating active centers.
Collapse
Affiliation(s)
- Cheng He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chang Xu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenxue Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|