1
|
Liu Y, Lin Q, Sheng M, Zhu Y, Wang R, Zhang W, Mu W. Highly Efficient In Vivo Production of Sialyllacto- N-tetraose C via Screening of Beneficial β1,4-galactosyltransferase and α2,6-sialyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5376-5384. [PMID: 39965110 DOI: 10.1021/acs.jafc.4c11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Biological production of human milk oligosaccharides (HMOs) using metabolically engineered strains is a research hotspot in food biotechnology, but less effort has been made on the biological production of sialylated complex HMOs. Sialyllacto-N-tetraose c is the only monosialylated complex HMO in the top 15 HMOs. In this study, the metabolic pathway of LST c was constructed in Escherichia coli BL21(DE3) by introducing three sequential glycosyltransferases: β1,3-N-acetylglucosaminyltransferase, β1,4-galactosyltransferase, and α2,6-sialyltransferase. The cytidine 5'-monophospho (CMP)-N-acetylneuraminic acid (Neu5Ac) pathway was enhanced to improve LST c production. The β1,4-galactosyltransferase from Helicobacter pylori J99 (HpGalT) and α2,6-sialyltransferase from Vespertiliibacter pulmonis (ED6ST) were screened as a pair of key glycosyltransferases for enhancing LST c production. The final engineered strain could produce 1.718 and 9.745 g/L LST c by shake-flask and fed-batch cultivation, respectively, indicating the feasibility of efficient biosynthesis of complex sialylated HMOs.
Collapse
Affiliation(s)
- Yuanlin Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Qian Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Mian Sheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Ruiyan Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
2
|
Yu W, Jin K, Xu X, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Engineering microbial cell factories by multiplexed spatiotemporal control of cellular metabolism: Advances, challenges, and future perspectives. Biotechnol Adv 2025; 79:108497. [PMID: 39645209 DOI: 10.1016/j.biotechadv.2024.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Generally, the metabolism in microbial organism is an intricate, spatiotemporal process that emerges from gene regulatory networks, which affects the efficiency of product biosynthesis. With the coming age of synthetic biology, spatiotemporal control systems have been explored as versatile strategies to promote product biosynthesis at both spatial and temporal levels. Meanwhile, the designer synthetic compartments provide new and promising approaches to engineerable spatiotemporal control systems to construct high-performance microbial cell factories. In this article, we comprehensively summarize recent developments in spatiotemporal control systems for tailoring advanced cell factories, and illustrate how to apply spatiotemporal control systems in different microbial species with desired applications. Future challenges of spatiotemporal control systems and perspectives are also discussed.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Ding Q, Ji M, Yao B, Wang Y. Modular metabolic flux control for kick-starting cascade catalysis through engineering customizable compartment. BIORESOURCE TECHNOLOGY 2025; 420:132109. [PMID: 39864563 DOI: 10.1016/j.biortech.2025.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/26/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Microbial compartment provides a promising approach for achieving high-valued chemical biosynthesis from renewable feedstock. However, volatile precursor could be utilized by pathway enzyme, which may hinder and adverse the cascade catalysis within microbial cell factory. Here, a customizable compartment was developed for pathway sequestration using spatially assembled cascade catalysis reaction. Firstly, a phase separation protein was designed to form the intracellular protein condensates, facilitating the construction of a customizable compartment in Escherichia coli. Subsequently, modular assembly and recruitment of customizable compartment were achieved through using a short peptide interaction pair to cluster enzymes or fuse them directly. Finally, the 2'-fucosyllactose (2'-FL) salvage pathway was heterogeneously expressed in microorganisms as a stable targeted chemical and proof-of-concept model, the results showed that anchoring various enzymes required for the 2'-FL cascade catalysis pathway within the customizable compartment created a multiple enzyme condensate system, resulting an improvement of 2'-FL titer compared to both wild type and optimized free enzymes reaction. These findings illustrating an effectively cascade catalysis model that increasing titer and kick-starting metabolic flux control through co-localizing multiple enzymes condensate within microbial cell factories.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China
| | - Mengqi Ji
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China
| | - Buhan Yao
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China.
| |
Collapse
|
4
|
Ji M, Yao B, Zhou J, Wang Y, Ding Q. Engineering a Silk Protein-Mediated Customizable Compartment for Modular Metabolic Synthesis. ACS Synth Biol 2024; 13:4180-4190. [PMID: 39630051 DOI: 10.1021/acssynbio.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Microbial cell factories provide a nontoxic, economical way for the synthesis of various chemicals and drugs, garnering significant attention from researchers. However, excessive dispersion of enzymes and accumulation of intermediate metabolites in the production process will weaken the reaction efficiency of the pathway enzyme. In this study, a cellular compartment was constructed to isolate the enzyme reaction space and optimize the modular metabolic synthesis. First, a special spider silk protein was designed and constructed to form protein condensates in microbial cells, and its synthetic microcompartment effects were investigated. Second, the interaction of short peptide pairs or direct fusion based on the silk protein was used to recruit a variety of enzymes to improve the efficiency of enzyme catalysis. Third, the 2'-fucosyllactose (2'-FL) de novo synthesis pathway and its modular optimization were carried out to verify the mode. Finally, a synthetic compartment was introduced into the pathway to directly aggregate the 2'-FL synthesis pathway, thus obtaining synthetic-compartment-mediated multienzyme aggregates. The experimental results showed that the titer of 2'-FL was significantly improved compared with those of wild-type and modular-optimized free enzymes. The utilization of this cell microcompartment offers a novel avenue for the aggregation of diverse enzymes, thereby offering an innovative approach for enhancing the efficiency of the microbial modular metabolic pathway.
Collapse
Affiliation(s)
- Mengqi Ji
- School of Life Sciences, Anhui University, Hefei 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei 230061, China
- Anhui Healcurer Health Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei 230061, China
- Institute of Biochemistry and Microbiology, Anhui University, Hefei 230061, China
| | - Buhan Yao
- School of Life Sciences, Anhui University, Hefei 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei 230061, China
- Anhui Healcurer Health Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei 230061, China
- Institute of Biochemistry and Microbiology, Anhui University, Hefei 230061, China
| | - Jingyu Zhou
- School of Life Sciences, Anhui University, Hefei 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei 230061, China
- Anhui Healcurer Health Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei 230061, China
- Institute of Biochemistry and Microbiology, Anhui University, Hefei 230061, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei 230061, China
- Anhui Healcurer Health Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei 230061, China
- Institute of Biochemistry and Microbiology, Anhui University, Hefei 230061, China
| | - Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei 230061, China
- Anhui Healcurer Health Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei 230061, China
- Institute of Biochemistry and Microbiology, Anhui University, Hefei 230061, China
| |
Collapse
|
5
|
Wan L, Ke J, Zhu Y, Zhang W, Mu W. Recent advances in engineering synthetic biomolecular condensates. Biotechnol Adv 2024; 77:108452. [PMID: 39271032 DOI: 10.1016/j.biotechadv.2024.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Biomolecular condensates are intriguing entities found within living cells. These structures possess the ability to selectively concentrate specific components through phase separation, thereby playing a crucial role in the spatiotemporal regulation of a wide range of cellular processes and metabolic activities. To date, extensive studies have been dedicated to unraveling the intricate connections between molecular features, physical properties, and cellular functions of condensates. This collective effort has paved the way for deliberate engineering of tailor-made condensates with specific applications. In this review, we comprehensively examine the underpinnings governing condensate formation. Next, we summarize the material states of condensates and delve into the design of synthetic intrinsically disordered proteins with tunable phase behaviors and physical properties. Subsequently, we review the diverse biological functions demonstrated by synthetic biomolecular condensates, encompassing gene regulation, cellular behaviors, modulation of biochemical reactions, and manipulation of endogenous protein activities. Lastly, we discuss future challenges and opportunities in constructing synthetic condensates with tunable physical properties and customized cellular functions, which may shed light on the development of new types of sophisticated condensate systems with distinct functions applicable to various scenarios.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Guo Q, Yang YX, Li DX, Ji XJ, Wu N, Wang YT, Ye C, Shi TQ. Advances in multi-enzyme co-localization strategies for the construction of microbial cell factory. Biotechnol Adv 2024; 77:108453. [PMID: 39278372 DOI: 10.1016/j.biotechadv.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Biomanufacturing, driven by technologies such as synthetic biology, offers significant potential to advance the bioeconomy and promote sustainable development. It is anticipated to transform traditional manufacturing and become a key industry in future strategies. Cell factories are the core of biomanufacturing. The advancement of synthetic biology and growing market demand have led to the production of a greater variety of natural products and increasingly complex metabolic pathways. However, this progress also presents challenges, notably the conflict between natural product production and chassis cell growth. This conflict results in low productivity and yield, adverse side effects, metabolic imbalances, and growth retardation. Enzyme co-localization strategies have emerged as a promising solution. This article reviews recent progress and applications of these strategies in constructing cell factories for efficient natural product production. It comprehensively describes the applications of enzyme-based compartmentalization, metabolic pathway-based compartmentalization, and synthetic organelle-based compartmentalization in improving product titers. The article also explores future research directions and the prospects of combining multiple strategies with advanced technologies.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| |
Collapse
|
7
|
Wu Y, Peng X, Fan D, Han S, Yang X. Pathway reconstruction and metabolic engineering for the de novo and enhancing production of monacolin J in Pichia pastoris. Bioprocess Biosyst Eng 2024; 47:1789-1801. [PMID: 39085651 DOI: 10.1007/s00449-024-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The statin is the primary cholesterol-lowering drug. Monacolin J (MJ) is a key intermediate in the biosynthetic pathway of statin. It was obtained in industry by the alkaline hydrolysis of lovastatin. The hydrolysis process resulted in multiple by-products and expensive cost of wastewater treatment. In this work, we used Pichia pastoris as the host to produce the MJ. The biosynthesis pathway of MJ was built in P. pastoris. The stable recombinant strain MJ2 was obtained by the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 genome-editing tool, and produced the MJ titer of 153.6 ± 2.4 mg/L. The metabolic engineering was utilized to enhance the production of MJ, and the fermentation condition was optimized. The MJ titer of 357.5 ± 5.0 mg/L was obtained from the recombinant strain MJ5-AZ with ATP-dependent citrate lyase (ACL), glucose-6-phosphate dehydrogenase (ZWF1) and four lovB genes, 132.7% higher than that from the original strain MJ2. The recombinant strain MJ5-AZ was cultured in a 7-L fermenter, and the MJ titer of 1493.0 ± 9.2 mg/L was achieved. The results suggested that increasing the gene dosage of rate-limiting step in the biosynthesis pathway of chemicals could improve the titer of production. It might be applicable to the production optimization of other polyketide metabolites.
Collapse
Affiliation(s)
- Yiping Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xuefang Peng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Dexun Fan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiaorong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Wan L, Ke J, Zhu Y, Zhang W, Mu W. Intracellular Construction of Organelle-like Compartments Facilitates Metabolic Flux in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20582-20591. [PMID: 39230507 DOI: 10.1021/acs.jafc.4c06895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The formation of well-designed synthetic compartments or membraneless organelles for applications in synthetic biology and cellular engineering has aroused enormous interest. However, establishing stable and robust intracellular compartments in bacteria remains a challenge. Here, we use the structured DIX domains derived from Wnt signaling pathway components, more specifically, Dvl2 and Axin1, as building blocks to generate intracellular synthetic compartments in Escherichia coli. Moreover, the aggregation behaviors and physical properties of the DIX-based compartments can be tailored by genetically embedding a specific dimeric domain into the DIX domains. Then, a pair of interacting motifs, consisting of the aforementioned dimeric domain and its corresponding binding ligand, was incorporated to modify the client recruitment pattern of the synthetic compartments. As a proof of concept, the human milk oligosaccharide lacto-N-tetraose (LNT) biosynthesis pathway was selected as a model metabolic pathway. The fermentation results demonstrated that the co-compartmentalization of sequential pathway enzymes into intracellular compartments created by DIX domain, or by the DIX domain in conjunction with interacting motifs, prominently enhanced the metabolic flux and increased LNT production. These synthetic protein compartments may provide a feasible and effective tool to develop versatile organelle-like compartments in bacteria for applications in cellular engineering and synthetic biology.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Wan L, Zhu Y, Ke J, Zhang W, Mu W. Compartmentalization of pathway sequential enzymes into synthetic protein compartments for metabolic flux optimization in Escherichia coli. Metab Eng 2024; 85:167-179. [PMID: 39163974 DOI: 10.1016/j.ymben.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Advancing the formation of artificial membraneless compartments with organizational complexity and diverse functionality remains a challenge. Typically, synthetic compartments or membraneless organelles are made up of intrinsically disordered proteins featuring low-complexity sequences or polypeptides with repeated distinctive short linear motifs. In order to expand the repertoire of tools available for the formation of synthetic membraneless compartments, here, a range of DIshevelled and aXin (DIX) or DIX-like domains undergoing head-to-tail polymerization were demonstrated to self-assemble into aggregates and generate synthetic compartments within E. coli cells. Then, synthetic complex compartments with diverse intracellular morphologies were generated by coexpressing different DIX domains. Further, we genetically incorporated a pair of interacting motifs, comprising a homo-dimeric domain and its anchoring peptide, into the DIX domain and cargo proteins, respectively, resulting in the alteration of both material properties and client recruitment of synthetic compartments. As a proof-of-concept, several human milk oligosaccharide biosynthesis pathways were chosen as model systems. The findings indicated that the recruitment of pathway sequential enzymes into synthetic compartments formed by DIX-DIX heterotypic interactions or by DIX domains embedded with specific interacting motifs efficiently boosted metabolic pathway flux and improved the production of desired chemicals. We propose that these synthetic compartment systems present a potent and adaptable toolkit for controlling metabolic flux and facilitating cellular engineering.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
10
|
Wan L, Zhu Y, Zhang W, Mu W. Recent advances in design and application of synthetic membraneless organelles. Biotechnol Adv 2024; 73:108355. [PMID: 38588907 DOI: 10.1016/j.biotechadv.2024.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) have been extensively studied due to their spatiotemporal control of biochemical and cellular processes in living cells. These findings have provided valuable insights into the physicochemical principles underlying the formation and functionalization of biomolecular condensates, which paves the way for the development of versatile phase-separating systems capable of addressing a variety of application scenarios. Here, we highlight the potential of constructing synthetic MLOs with programmable and functional properties. Notably, we organize how these synthetic membraneless compartments have been capitalized to manipulate enzymatic activities and metabolic reactions. The aim of this review is to inspire readerships to deeply comprehend the widespread roles of synthetic MLOs in the regulation enzymatic reactions and control of metabolic processes, and to encourage the rational design of controllable and functional membraneless compartments for a broad range of bioengineering applications.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Huang H, Yu W, Xu X, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial Engineering of Escherichia coli for Enhancing 3-Fucosyllactose Production. ACS Synth Biol 2024; 13:1866-1878. [PMID: 38836566 DOI: 10.1021/acssynbio.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
3-Fucosyllactose (3-FL) is an important fucosylated human milk oligosaccharide (HMO) with biological functions such as promoting immunity and brain development. Therefore, the construction of microbial cell factories is a promising approach to synthesizing 3-FL from renewable feedstocks. In this study, a combinatorial engineering strategy was used to achieve efficient de novo 3-FL production in Escherichia coli. α-1,3-Fucosyltransferase (futM2) from Bacteroides gallinaceum was introduced into E. coli and optimized to create a 3-FL-producing chassis strain. Subsequently, the 3-FL titer increased to 5.2 g/L by improving the utilization of the precursor lactose and down-regulating the endogenous competitive pathways. Furthermore, a synthetic membraneless organelle system based on intrinsically disordered proteins was designed to spatially regulate the pathway enzymes, producing 7.3 g/L 3-FL. The supply of the cofactors NADPH and GTP was also enhanced, after which the 3-FL titer of engineered strain E26 was improved to 8.2 g/L in a shake flask and 10.8 g/L in a 3 L fermenter. In this study, we developed a valuable approach for constructing an efficient 3-FL-producing cell factory and provided a versatile workflow for other chassis cells and HMOs.
Collapse
Affiliation(s)
- Huiyuan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd., Yixing 214200, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Wang R, Su Y, Yang W, Zhang H, Wang J, Gao W. Enhanced precision and efficiency in metabolic regulation: Compartmentalized metabolic engineering. BIORESOURCE TECHNOLOGY 2024; 402:130786. [PMID: 38703958 DOI: 10.1016/j.biortech.2024.130786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Metabolic engineering has witnessed remarkable advancements, enabling successful large-scale, cost-effective and efficient production of numerous compounds. However, the predominant expression of heterologous genes in the cytoplasm poses limitations, such as low substrate concentration, metabolic competition and product toxicity. To overcome these challenges, compartmentalized metabolic engineering allows the spatial separation of metabolic pathways for the efficient and precise production of target compounds. Compartmentalized metabolic engineering and its common strategies are comprehensively described in this study, where various membranous compartments and membraneless compartments have been used for compartmentalization and constructive progress has been made. Additionally, the challenges and future directions are discussed in depth. This review is dedicated to providing compartmentalized, precise and efficient methods for metabolic production, and provides valuable guidance for further development in the field of metabolic engineering.
Collapse
Affiliation(s)
- Rubing Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Pan F, Zu H, Zhu YJ, Qian ZG, Xia XX. Spatiotemporal Organization of Functional Cargoes by Light-Switchable Condensation in Escherichia coli Cells. JACS AU 2024; 4:1480-1488. [PMID: 38665676 PMCID: PMC11040705 DOI: 10.1021/jacsau.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Biomolecular condensates are dynamic subcellular compartments that lack surrounding membranes and can spatiotemporally organize the cellular biochemistry of eukaryotic cells. However, such dynamic organization has not been realized in prokaryotes that naturally lack organelles, and strategies are urgently needed for dynamic biomolecular compartmentalization. Here we develop a light-switchable condensate system for on-demand dynamic organization of functional cargoes in the model prokaryotic Escherichia coli cells. The condensate system consists of two modularly designed and genetically encoded fusions that contain a condensation-enabling scaffold and a functional cargo fused to the blue light-responsive heterodimerization pair, iLID and SspB, respectively. By appropriately controlling the biogenesis of the protein fusions, the condensate system allows rapid recruitment and release of cargo proteins within seconds in response to light, and this process is also reversible and repeatable. Finally, the system is demonstrated to dynamically control the subcellular localization of a cell division inhibitor, SulA, which enables the reversible regulation of cell morphologies. Therefore, this study provides a new strategy to dynamically control cellular processes by harnessing light-controlled condensates in prokaryotic cells.
Collapse
Affiliation(s)
- Fang Pan
- State Key Laboratory of Microbial
Metabolism, Joint International Research Laboratory of Metabolic &
Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Han Zu
- State Key Laboratory of Microbial
Metabolism, Joint International Research Laboratory of Metabolic &
Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ya-Jiao Zhu
- State Key Laboratory of Microbial
Metabolism, Joint International Research Laboratory of Metabolic &
Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial
Metabolism, Joint International Research Laboratory of Metabolic &
Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial
Metabolism, Joint International Research Laboratory of Metabolic &
Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
14
|
Deng B, Wan G. Technologies for studying phase-separated biomolecular condensates. ADVANCED BIOTECHNOLOGY 2024; 2:10. [PMID: 39883284 PMCID: PMC11740866 DOI: 10.1007/s44307-024-00020-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 01/31/2025]
Abstract
Biomolecular condensates, also referred to as membrane-less organelles, function as fundamental organizational units within cells. These structures primarily form through liquid-liquid phase separation, a process in which proteins and nucleic acids segregate from the surrounding milieu to assemble into micron-scale structures. By concentrating functionally related proteins and nucleic acids, these biomolecular condensates regulate a myriad of essential cellular processes. To study these significant and intricate organelles, a range of technologies have been either adapted or developed. In this review, we provide an overview of the most utilized technologies in this rapidly evolving field. These include methods used to identify new condensates, explore their components, investigate their properties and spatiotemporal regulation, and understand the organizational principles governing these condensates. We also discuss potential challenges and review current advancements in applying the principles of biomolecular condensates to the development of new technologies, such as those in synthetic biology.
Collapse
Affiliation(s)
- Boyuan Deng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, GuangZhou, GuangDong, China
| | - Gang Wan
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, GuangZhou, GuangDong, China.
| |
Collapse
|
15
|
Fang Z, Zhu YJ, Qian ZG, Xia XX. Designer protein compartments for microbial metabolic engineering. Curr Opin Biotechnol 2024; 85:103062. [PMID: 38199036 DOI: 10.1016/j.copbio.2023.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Protein compartments are distinct structures assembled in living cells via self-assembly or phase separation of specific proteins. Significant efforts have been made to discover their molecular structures and formation mechanisms, as well as their fundamental roles in spatiotemporal control of cellular metabolism. Here, we review the design and construction of synthetic protein compartments for spatial organization of target metabolic pathways toward increased efficiency and specificity. In particular, we highlight the compartmentalization strategies and recent examples to speed up desirable metabolic reactions, to reduce the accumulation of toxic metabolic intermediates, and to switch competing metabolic pathways. We also identify the most important challenges that need to be addressed for exploitation of these designer compartments as a versatile toolkit in metabolic reprogramming.
Collapse
Affiliation(s)
- Zhen Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ya-Jiao Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| |
Collapse
|