1
|
Zhang S, Ao H, Dong J, Wang D, Wang C, Xu X, Hou Z, Yang J. Dipole Moment Dictates the Preferential Immobilization in Gel Electrolytes for Ah-level Aqueous Zinc-Metal Batteries. Angew Chem Int Ed Engl 2025; 64:e202414702. [PMID: 39320088 DOI: 10.1002/anie.202414702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Aqueous Zn-metal batteries are of great interest due to their high material abundance, low production cost, and excellent safety. However, they suffer from severe side reactions and notorious dendrite growth closely related to electrolytes. Here, in situ generated zwitterionic polymers are used as gel electrolytes to overcome these problems. It is shown that anions and H2O, but not anions and cations, are preferentially immobilized at different sites of zwitterionic polymers, facilitating the free migration of Zn2+ and reducing the side reactions. This immobilization can be associated with the dipole moment of zwitterionic polymers. As a result, poly[3-dimethyl(methacryloyloxy ethyl) ammonium propane sulfonate] (PDMAPS) stands out from a series of zwitterionic polymers and outperforms the other candidates in electrochemical performance. The symmetric cells using PDMAPS smoothly operate ~9000 h at 0.5 mA cm-2 for 0.5 mAh cm-2, much better than the controls. Moreover, PDMAPS enables an Ah-level pouch cell for continuous cycling. These results not only benefit the rational molecular design of advanced electrolytes, but also demonstrate the promising potential of zwitterionic polymers in aqueous Zn-metal batteries.
Collapse
Affiliation(s)
- Shaojie Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Huaisheng Ao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Jingjing Dong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Dongdong Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chenggang Wang
- School of Physicsand Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Xijin Xu
- School of Physicsand Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Zhiguo Hou
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Wu K, Liu X, Ning F, Subhan S, Xie Y, Lu S, Xia Y, Yi J. Engineering of Charge Density at the Anode/Electrolyte Interface for Long-Life Zn Anode in Aqueous Zinc Ion Battery. CHEMSUSCHEM 2025; 18:e202401251. [PMID: 39046757 DOI: 10.1002/cssc.202401251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
The aqueous zinc ion battery emerges as the promising candidate applied in large-scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery.
Collapse
Affiliation(s)
- Kai Wu
- Nanotechnology Research Institute/G60 STI Valley Industry & Innovation Institute, Jiaxing University, Zhejiang, 314000, China
| | - Xiaoyu Liu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Fanghua Ning
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Sidra Subhan
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
- Institute of chemical sciences, University of Peshawar, KPK, 25000, Pakistan
| | - Yihua Xie
- Department of Chemistry and Institute of New Energy, Fudan University, Shanghai, 200433, China
| | - Shigang Lu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yongyao Xia
- Department of Chemistry and Institute of New Energy, Fudan University, Shanghai, 200433, China
| | - Jin Yi
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Ji D, Huang B, Li H, Guo P, Li W, Liu R, Zhao X, Li G. Enhanced electro-catalysis for methanol oxidation reaction performance by edge defects of ordered mesoporous carbon. J Colloid Interface Sci 2024; 683:68-80. [PMID: 39724834 DOI: 10.1016/j.jcis.2024.12.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Heteroatom-doped carbon materials are widely used to improve the electrocatalytic oxidation of methanol; however, the underlying mechanisms driving this enhancement remain poorly understood. A major challenge lies in developing non-doped carbon supports with tunable intrinsic defect types tailored for metal-based catalysts. In this study, we synthesize a series of ordered mesoporous carbon (OMC) supports with adjustable edge defect densities by varying roasting temperatures and employing a zinc (Zn) evaporation strategy to systematically investigate the impact of edge defects on methanol oxidation reaction (MOR) performance. Theoretical calculations and structural characterizations confirm that the electron metal-support interaction (EMSI) between OMC edge defects and palladium nanoparticles (Pd NPs) effectively modulates the electronic structure of Pd NPs. This modulation not only enhances overall reaction activity and selectivity for the non-CO pathway but also strengthens the anchoring of Pd NPs, leading to superior activity and stability of the Pd/OMC-Zn0.55 catalyst in methanol electrocatalytic oxidation. Notably, after rigorously excluding the influence of various physicochemical properties of the carbon supports, the crucial role of edge defects in improving MOR performance is established. This work provides essential insights into the controlled synthesis of carbon-based catalysts with edge defects and introduces promising strategies for the development of high-performance anode catalysts for direct methanol fuel cells.
Collapse
Affiliation(s)
- Dong Ji
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China
| | - BoYu Huang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China
| | - HongWei Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China.
| | - Peng Guo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China
| | - WeiPing Li
- Gansu Research Institute of Chemical Industry Co., Ltd, Lanzhou 730050, PR China
| | - Rong Liu
- Gansu Research Institute of Chemical Industry Co., Ltd, Lanzhou 730050, PR China
| | - XinHong Zhao
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China
| | - GuiXian Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China
| |
Collapse
|
4
|
Zhang X, Wang C, Huang J, Li C, Qu G, Li N, Zhao S, Li T, Li D, Qin H, Xu X. Multifunctional Interface Layer Constructed by Trace Zwitterions for Highly Reversible Zinc Anodes. Angew Chem Int Ed Engl 2024; 63:e202411884. [PMID: 39218800 DOI: 10.1002/anie.202411884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The inhomogeneous plating/stripping of Zn anode, attributed to dendrite growth and parasitic reactions at the electrode/electrolyte interface, severely restricts its cycling life-span. Here, trace zwitterions (trifluoroacetate pyridine, TFAPD) are introduced into the aqueous electrolyte to construct a multifunctional interface that enhances the reversibility of Zn anode. The TFA- anions with strong specific adsorption adhere onto the Zn surface to reconstruct the inner Helmholtz plane (IHP), preventing the hydrogen evolution and corrosion side reactions caused by free H2O. The Py+ cations accumulate on the outer Helmholtz plane (OHP) of Zn anode with the force of electric field during Zn2+ plating, forming a shielding layer to uniformize the deposition of Zn2+. Besides, the adsorbed TFA- and Py+ promote the desolvation process of Zn2+ resulting in fast reaction kinetics. Thus, the Zn||Zn cells present an outstanding cycling performance of more than 10000 hours. And even at 85 % utilization rate of Zn, it can stably cycle for over 200 hours at 10 mA cm-2 and 10 mAh cm-2. The Zn||I2 full cell exhibits a capacity retention of over 95 % even after 30000 cycles. Remarkably, the Zn||I2 pouch cells (95 mAh) deliver a high-capacity retention of 99 % after 750 cycles.
Collapse
Affiliation(s)
- Xixi Zhang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, Shandong, P. R. China
| | - Chenggang Wang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, Shandong, P. R. China
| | - Jinzhao Huang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, Shandong, P. R. China
| | - Chuanlin Li
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, Shandong, P. R. China
| | - Guangmeng Qu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Na Li
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, Shandong, P. R. China
| | - Shunshun Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P. R. China
| | - Titi Li
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, Shandong, P. R. China
| | - Dingzheng Li
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, Shandong, P. R. China
| | - Hongjie Qin
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, Shandong, P. R. China
| | - Xijin Xu
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, Shandong, P. R. China
| |
Collapse
|
5
|
Ye J, Tian W, Du Y, Linghu S, Wang K, Yuan L, Li H, Ji J. Synergistic Gradient Anodes for Long-Term Stability in Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405891. [PMID: 39344564 DOI: 10.1002/smll.202405891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Indexed: 10/01/2024]
Abstract
The stability of aqueous zinc metal anodes is still constrained by their severe dendrite growth. Optimizing electric field distribution and crystallography to modulate the diffusion and deposition behavior of zinc ions can effectively suppress dendrite growth. However, the fabrication strategy to directly endow specific textured zinc anodes with gradient electric field distribution is still lacking. Herein, a strategy combining crystal reconstruction of commercial zinc foil with graphene oxide (GO) protective layer is proposed to construct an in situ gradient electric field-enhanced strong (002) textured GO@ZnO/Zn(002) anode. Based on the experimental and theoretical results, the GO protective layer can regulate a wide-range homogeneous Zn2+ ions flow, while the dense and uniform ZnO/Zn(002) nanoneedles /nanoparticles can enhance localized polarized electric field to accelerate rapid localized transfer of Zn2+ ions and guide them toward directional deposition along (002) plane. Therefore, the hierarchical GO@ZnO/Zn(002) anode enables the symmetric cell to operate continuously and stably for 5700 and 4200 h at 2 and 4 mA cm-2, respectively, which is comparable to or better than most high-end Zn anodes. This work presents new insights into the zinc foil reconstruction and gradient electric field fabrication strategy, offering a scalable approach for the development of long-term stable metal anodes.
Collapse
Affiliation(s)
- Jiahui Ye
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuping Du
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shaoyong Linghu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kaixiang Wang
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Li Yuan
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongjiao Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
6
|
Chang L, Li J, Sun Q, Liu X, Lu X, Cheng H. Innovative Zinc Anodes: Advancing Metallurgy Methods to Battery Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408124. [PMID: 39428824 DOI: 10.1002/smll.202408124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Aqueous zinc metal batteries (AZMBs) are emerging as a powerful contender in the realm of large-scale intermittent energy storage systems, presenting a compelling alternative to existing ion battery technologies. They harness the benefits of metal zinc's high safety, natural abundance, and favorable electrochemical potential (-0.762 V vs Standard hydrogen electrode, SHE), alongside an impressive theoretical capacity (820 mAh g-1 and 5655 mAh cm-3). However, the electrochemical performance of ZMBs is impeded by several challenges, including poor compatibility with high-loading cathodes and persistent side reactions. These issues are intricately linked to the inherent physicochemical properties of the zinc metal anodes (ZMAs). Here, this review delves into the traditional methods of ZMAs production, encompassing extraction, electrodeposition, and rolling processes. The discussion then progresses to an exploration of cutting-edge methodologies designed to enhance the electrochemical performance of ZMAs. These methods are categorized into alloying, pre-treatment of substrate, advanced electrodeposition techniques, and the development of composite anodes utilizing zinc powder. The review offers a comparative analysis of the merits and drawbacks of various optimization strategies, highlighting the beneficial outcomes achieved. It aspires to inspire novel concepts for the advancement and innovation of next-generation zinc-based energy storage solutions.
Collapse
Affiliation(s)
- Linhui Chang
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiamin Li
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiangchao Sun
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| | - Xijun Liu
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| | - Xionggang Lu
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongwei Cheng
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
Back S, Xu L, Moon J, Kim J, Liu Y, Yi SY, Choi D, Lee J. A Versatile Redox-Active Electrolyte for Solid Fixation of Polyiodide and Dendrite-Free Operation in Sustainable Aqueous Zinc-Iodine Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405487. [PMID: 39092672 DOI: 10.1002/smll.202405487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Practical utilization of zinc-iodine (Zn-I2) batteries is hindered by significant challenges, primarily stemming from the polyiodide shuttle effect on the cathode and dendrite growth on the anode. Herein, a feasible redox-active electrolyte has been introduced with tetraethylammonium iodide as an additive that simultaneously addresses the above mentioned challenges via polyiodide solidification on the cathode and the electrostatic shielding effect on the anode. The tetraethylammonium (TEA+) captures water-soluble polyiodide intermediates (I3 -, I5 -), forming a solid complex at the cathode, thereby suppressing capacity loss during charge/discharge. Furthermore, the TEA+ mitigates dendrite growth on the Zn anode via the electrostatic shielding effect, promoting uniform and compact Zn deposition at the anode. Consequently, the Zn||Zn symmetric cell demonstrates superior cycling stability during Zn plating/stripping over 4,200 h at 1 mA cm-2 and 1 mAh cm-2. The Zn||NiNC full-cell exhibits a stable capacity retention of 98.4% after 20 000 cycles (>5 months) with near-unity Coulombic efficiency at 1 A g-1. The study provides novel insights for establishing a new direction for low-cost, sustainable, and long-lifespan Zn-I2 batteries.
Collapse
Affiliation(s)
- Seungho Back
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea
| | - Joonhee Moon
- Division of Materials Analysis, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - Jinuk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea
| | - Yanan Liu
- Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou, Henan, 450041, P. R. China
| | - Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea
| | - Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Chen Y, Zhang ZX, Cai PW, Guo ZW, Lu ZW, Sun C, Li XX, Chen JX, Wen ZH, Zheng ST. Polyoxotungstate Featuring Zinc-Ion-Triggered Structural Transformation as An Efficient Electrolyte Additive for Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl 2024:e202420284. [PMID: 39601388 DOI: 10.1002/anie.202420284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
It is promising but still challenging for the widespread application of aqueous zinc batteries due to the poor reversibility of the zinc anode caused by prevalent dendrite growth and pronounced interfacial side reactions. Herein, we report a rare soluble and water-stable high-nuclearity {Nd9Si4W39} polyoxotungstate. Interestingly, upon encountering Zn2+ ions, the discrete {Nd9Si4W39} nanocluster undergoes a structural transformation to form an infinitely extended cluster-based {[Zn(H2O)4]3[Nd9Si4W39]2} two-dimensional honeycomb layer, with which atomic-level Zn2+ ion effects in reconstructing the layer are determined. More interestingly, we demonstrate that the structural transformation property renders the {Nd9Si4W39} cluster an efficient electrolyte additive for aqueous zinc batteries, enabling the formation of the 2D layer as a protective layer on the zinc anode, significantly enhancing the reversibility of the zinc anode. Compared to the pristine Zn//Zn symmetric battery, the Zn//Zn symmetric battery with the {Nd9Si4W39} additive exhibits an extended lifespan of over 2000 hours at a current density of 1 mA cm-2. In situ optical microscopy, Raman spectroscopy, and molecular dynamics simulations reveal that the formation of the protective layer effectively promotes uniform zinc deposition, and inhibits zinc agglomeration, dendrite growth, and side reactions, thereby enabling the zinc anode to exhibit high reversibility and long-term service life.
Collapse
Affiliation(s)
- Yi Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ze-Xun Zhang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ping-Wei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zheng-Wei Guo
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhi-Wen Lu
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jun-Xiang Chen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhen-Hai Wen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
9
|
Han W, Tan Y, Ni L, Sun X, Li K, Lu L, Zhang H. Sn Penetrated Zincophilic Interface Design in Porous Zn Substrate for High Performance Zn-Ion Battery. SMALL METHODS 2024:e2401499. [PMID: 39511856 DOI: 10.1002/smtd.202401499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Rechargeable zinc-ion batteries are considered an ideal energy storage system due to their low cost and nonflammable aqueous electrolyte. However, dendrite growth, hydrogen evolution reaction, and self-corrosion of zinc anode brought about serious safety risks including short circuits and electrode expansion. Therefore, a modified host-design strategy with a 3D porous structure and bulk-phase penetrated zincophilic interface is proposed to boost the stability and lifetime of the Zn anode. The porous Zn substrate is constructed by universal HCl etching and the uniform and tight Sn-penetrated zincophilic interface is formed by effective electron beam evaporation (EBE). The porous substrate can uniform zinc ion flux and the Sn coating could effectively improve zinc ion deposition behavior, thus inhibiting the risk of dendrites growth and side reaction. As a result, the 3D Zn substrate with Sn interface (3D Zn@Sn) exhibits prolonged galvanostatic cycling performance up to 4500 h with a low polarization of ≈25 mV (1 mA cm-2, 1 mAh cm-2) in the symmetric cell. The full cell assembled with KVOH@Ti could maintain a high specific capacity of 148.6 mAh g-1 after 500 galvanostatic cycles (10 A g-1). This work proposed an improved electrode design to realize the high performance of zinc ion batteries.
Collapse
Affiliation(s)
- Wangyang Han
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Yihong Tan
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liping Ni
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Ximei Sun
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Kunzhen Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Leilei Lu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Hui Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
10
|
Chen Z, Wang Y, Wu Q, Wang C, He Q, Hu T, Han X, Chen J, Zhang Y, Chen J, Yang L, Wang X, Ma Y, Zhao J. Grain Boundary Filling Empowers (002)-Textured Zn Metal Anodes with Superior Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411004. [PMID: 39300904 DOI: 10.1002/adma.202411004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Aqueous Zn battery is promising for grid-level energy storage due to its high safety and low cost, but dendrite growth and side reactions at the Zn metal anode hinder its development. Designing Zn with (002) orientation improves the stability of the Zn anode, yet grain boundaries remain susceptible to corrosion and dendrite growth. Addressing these intergranular issues is crucial for enhancing the electrochemical performance of (002)-textured Zn. Here, a strategy based on grain boundary wetting to fill intergranular regions and mitigate these issues is reported. By systematically investigating boundary fillers and filling conditions, In metal is chosen as the filler, and one-step annealing is used to synergistically convert commercial Zn foils into single (002)-textured Zn while filling In into the boundaries. The inter-crystalline-modified (002)-textured Zn (IM(002) Zn) effectively inhibits corrosion and dendrite growth, resulting in excellent stability in batteries. This work offers new insights into Zn anode protection and the development of high-energy Zn batteries.
Collapse
Affiliation(s)
- Zibo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qiang Wu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Cheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Qian He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Tao Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Xuran Han
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jialu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jianyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Yanwen Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Suzhou Vocational Institute of Industrial Technology, Suzhou, 215104, P. R. China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
11
|
Zhang H, You Y, Sha D, Shui T, Moloto N, Liu J, Kure-Chu SZ, Hihara T, Zhang W, Sun Z. Planar Deposition via In Situ Conversion Engineering for Dendrite-Free Zinc Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409763. [PMID: 39212642 DOI: 10.1002/adma.202409763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Owing to the considerable capacity, high safety, and abundant zinc resources, zinc-ion batteries (ZIBs) have been garnering much attention. Nonetheless, the unsatisfactory cyclic lifespan and poor reversibility originate from side reactions and dendrite obstacles to their practical applications. In addition to inhibiting the corrosion of aqueous electrolytes, regulating planar deposition is a key strategy to enhance their long-term stability. Herein, an in situ conversion strategy is reported to construct a protective "dual-layer" structure (VZSe/V@Zn) on zinc metal, consisting of the VSe2-ZnSe outer layer with low lattice mismatch to Zn (002) plane, and corrosion-resistant nanometallic V inner layer. Such design integrates superior interfacial ionic/electronic transfer, corrosion resistance, and unique planar deposition regulation capability. The as-prepared VZSe/V@Zn demonstrates remarkable durability of 238 h at 50 mA cm-2 with a high depth of discharge (68.3% DOD) in the Zn||Zn symmetric cell. Even in the anode-free system, the as-prepared protective layer can extend the cycle life up to 2000 cycles, with an outstanding capacity retention of 93.1% and ultra-high average coulombic efficiency of 99.998%. This work delineates an effective strategy for fabricating lattice-matching protective layers, with profound implications for elucidating zinc deposition mechanisms and paving the way for the development of high-performance zinc batteries.
Collapse
Affiliation(s)
- Hanning Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Yurong You
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Dawei Sha
- School of Materials Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Tao Shui
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Nosipho Moloto
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Jiacheng Liu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 4668555, Japan
| | - Song-Zhu Kure-Chu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 4668555, Japan
| | - Takehiko Hihara
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 4668555, Japan
| | - Wei Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
12
|
Chen S, Ouyang K, Liu Y, Cui M, Pu G, Wang Y, Zhang K, Huang Y. Non-Epitaxial Electrodeposition of Overall 99 % (002) Plane Achieves Extreme and Direct Utilization of 95 % Zn Anode and By-Product as Cathode. Angew Chem Int Ed Engl 2024; 63:e202409303. [PMID: 39037504 DOI: 10.1002/anie.202409303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/23/2024]
Abstract
Zn anode protection in Zn-ion batteries (ZIBs) face great challenges of high Zn utilization rate (i.e., depth of discharge, DOD) and high current density due to the large difficulty in obtaining an extreme overall RTC (relative texture coefficient) of Zn (002) plane. Through the potent interaction of Mn(III)aq and H+ with distinct Zn crystal planes under an electric field, large-size Zn foils with a breakthrough (002) plane RTC of 99 % (i.e., close to Zn single crystal) are electrodeposited on texture-less substrates, which is also applicable from recycled Zn. The ultra-high (002) plane RTC remarkably enhances cyclic performance of the Zn anode (70 % DOD @ 45.5 mA cm-2), and the DOD is even up to 95 % (@ 28.1 mA cm-2) with an electrolyte additive of polyaniline. Furthermore, MnO2, the by-product of electrodeposition, is directly used as cathode of both coin cell and pouch battery, surpassing the cyclic performance exhibited by the majority of Zn||MnO2 batteries in previous instances. These results demonstrate the great potential of our strategy for high-performance, low-cost and large-scale ZIBs.
Collapse
Affiliation(s)
- Sheng Chen
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Kefeng Ouyang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Youfa Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Mangwei Cui
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Guo Pu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Yihan Wang
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Kun Zhang
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Yan Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Liu G, Tang Y, Wei Y, Li H, Yan J, Feng Z, Du W, Yang Q, Ye M, Zhang Y, Wen Z, Liu X, Li CC. Hydrophobic Ion Barrier-Enabled Ultradurable Zn (002) Plane Orientation towards Long-Life Anode-Less Zn Batteries. Angew Chem Int Ed Engl 2024; 63:e202407639. [PMID: 38976402 DOI: 10.1002/anie.202407639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024]
Abstract
Gradual disability of Zn anode and high negative/positive electrode (N/P) ratio usually depreciate calendar life and energy density of aqueous Zn batteries (AZBs). Herein, within original Zn2+-free hydrated electrolytes, a steric hindrance/electric field shielding-driven "hydrophobic ion barrier" is engineered towards ultradurable (002) plane-exposed Zn stripping/plating to solve this issue. Guided by theoretical simulations, hydrophobic adiponitrile (ADN) is employed as a steric hindrance agent to ally with inert electric field shielding additive (Mn2+) for plane adsorption priority manipulation, thereby constructing the "hydrophobic ion barrier". This design robustly suppresses the (002) plane/dendrite growth, enabling ultradurable (002) plane-exposed dendrite-free Zn stripping/plating. Even being cycled in Zn‖Zn symmetric cell over 2150 h at 0.5 mA cm-2, the efficacy remains well-kept. Additionally, Zn‖Zn symmetric cells can be also stably cycled over 918 h at 1 mA cm-2, verifying uncompromised Zn stripping/plating kinetics. As-assembled anode-less Zn‖VOPO4 ⋅ 2H2O full cells with a low N/P ratio (2 : 1) show a high energy density of 75.2 Wh kg-1 full electrode after 842 cycles at 1 A g-1, far surpassing counterparts with thick Zn anode and low cathode loading mass, featuring excellent practicality. This study opens a new avenue by robust "hydrophobic ion barrier" design to develop long-life anode-less Zn batteries.
Collapse
Affiliation(s)
- Guigui Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yongchao Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Yue Wei
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China
| | - Hongqing Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jianping Yan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhenfeng Feng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wencheng Du
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 522000, P. R. China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Minghui Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Zhipeng Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Xiaoqing Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| |
Collapse
|
14
|
Ran J, Chen P, Quan X, Si M, Gao D. Improving the Oxygen Evolution Reaction Kinetics in Zn-Air Battery by Iodide Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402052. [PMID: 38970555 DOI: 10.1002/smll.202402052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Zinc-air batteries (ZABs) have garnered considerable attention as a highly promising contender in the field of energy storage and conversion. Nevertheless, their performance is considerably impeded by the proliferation of dendrites on the Zinc anode and the slow kinetics of the redox reaction on the air cathode. Herein, taking Ag30%@LaCoO3 (Ag30%@LCO) heterojunction catalyst as the cathode, it is demonstrated that adding KI additives to the alkaline electrolyte can not only enhance the oxygen electrocatalytic reaction but also inhibit the formation of zinc anode dendrites, thereby achieving a comprehensive improvement in the performance of ZABs. Under the action of the KI additive, the optimized Ag30%@LCO catalyst shows a decreased overpotential from 460 to 220 mV at j = 10 mA cm-2, while the assembled ZAB shows reduced charging potential (1.8 V), and long cycle stability (180 h). Furthermore, the morphology characterization results indicate a reduction in dendrites on the Zn anode. Both experimental and calculated results indicate that the presence of I- as a reaction modifier alters the trajectory of the conventional oxygen evolution reaction, resulting in a more thermodynamically favorable pathway. The introduction of KI additives as electrolytes provides a straightforward approach to developing comprehensively improved ZABs.
Collapse
Affiliation(s)
- Jiaqi Ran
- Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000, China
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Peng Chen
- Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000, China
| | - Xiangning Quan
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Mingsu Si
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Daqiang Gao
- Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
15
|
Ju Z, Zheng T, Zhang B, Yu G. Interfacial chemistry in multivalent aqueous batteries: fundamentals, challenges, and advances. Chem Soc Rev 2024; 53:8980-9028. [PMID: 39158505 DOI: 10.1039/d4cs00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
As one of the most promising electrochemical energy storage systems, aqueous batteries are attracting great interest due to their advantages of high safety, high sustainability, and low costs when compared with commercial lithium-ion batteries, showing great promise for grid-scale energy storage. This invited tutorial review aims to provide universal design principles to address the critical challenges at the electrode-electrolyte interfaces faced by various multivalent aqueous battery systems. Specifically, deposition regulation, ion flux homogenization, and solvation chemistry modulation are proposed as the key principles to tune the inter-component interactions in aqueous batteries, with corresponding interfacial design strategies and their underlying working mechanisms illustrated. In the end, we present a critical analysis on the remaining obstacles necessitated to overcome for the use of aqueous batteries under different practical conditions and provide future prospects towards further advancement of sustainable aqueous energy storage systems with high energy and long durability.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Tianrui Zheng
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
16
|
Ma MY, Liu Y, Yang JL, Li SY, Du M, Liu DH, Hao ZL, Guo JZ, Wu XL. Multi-metal ions co-regulated vanadium oxide cathode toward long-life aqueous zinc-ion batteries. J Colloid Interface Sci 2024; 670:174-181. [PMID: 38761570 DOI: 10.1016/j.jcis.2024.05.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Interlayer intercalation engineering shows great feasibility to improve the structure stability of the layered oxides. Although high Zn-storage capability has been attained based on the pillar effect of multifarious intercalants, an in-depth understanding the synergistic effect of intercalated multiple metal ions is still in deficiency. Herein, alkali metal ion K+, alkaline earth metal ion Mg2+ and trivalent metal ion Al3+ are introduced into the VO interlayer of V2O5. Due to the different electronegativity and hydrated ion radius of K+, Mg2+ and Al3+, adjusting the relative proportions of these metal ions can achieve an appropriate interlayer spacing, stable layer structure and regular morphology, which facilitates the transport kinetics of Zn2+. Under the synergistic effect of pre-intercalated multi-metal ion, the optimal tri-metal ion intercalated hydrated V2O5 cathode exhibits a high specific capacity of 382.4 mAh g-1 at 0.5 A g-1, and long-term cycling stability with capacity retention of 86 % after 2000 cycles at the high current density of 10 A g-1. Ex-situ and kinetic characterizations reveal the fast charge transfer and reversible Zn2+ intercalation mechanism. The multi-ion engineering strategy provides an effective way to design desirable layered cathode materials for aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Ming-Yang Ma
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024 PR China
| | - Yan Liu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024 PR China
| | - Jia-Lin Yang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024 PR China
| | - Shu-Ying Li
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 PR China
| | - Miao Du
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024 PR China
| | - Dai-Huo Liu
- MOE Key Laboratory of Green Chemical Media and Reactions, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 PR China
| | - Ze-Lin Hao
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 PR China
| | - Jin-Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024 PR China.
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024 PR China; Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 PR China.
| |
Collapse
|
17
|
Qiu D, Wang H, Ma T, Huang J, Meng Z, Fan D, Bowen CR, Lu H, Liu Y, Chandrasekaran S. Promoting Electrocatalytic Oxygen Reactions Using Advanced Heterostructures for Rechargeable Zinc-Air Battery Applications. ACS NANO 2024; 18:21651-21684. [PMID: 39129497 PMCID: PMC11342935 DOI: 10.1021/acsnano.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
In order to facilitate electrochemical oxygen reactions in electrically rechargeable zinc-air batteries (ZABs), there is a need to develop innovative approaches for efficient oxygen electrocatalysts. Due to their reliability, high energy density, material abundance, and ecofriendliness, rechargeable ZABs hold promise as next-generation energy storage and conversion devices. However, the large-scale application of ZABs is currently hindered by the slow kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). However, the development of heterostructure-based electrocatalysts has the potential to surpass the limitations imposed by the intrinsic properties of a single material. This Account begins with an explanation of the configurations of ZABs and the fundamentals of the oxygen electrochemistry of the air electrode. Then, we summarize recent progress with respect to the variety of heterostructures that exploit bifunctional electrocatalytic reactions and overview their impact on ZAB performance. The range of heterointerfacial engineering strategies for improving the ORR/OER and ZAB performance includes tailoring the surface chemistry, dimensionality of catalysts, interfacial charge transfer, mass and charge transport, and morphology. We highlight the multicomponent design approaches that take these features into account to create advanced highly active bifunctional catalysts. Finally, we discuss the challenges and future perspectives on this important topic that aim to enhance the bifunctional activity and performance of zinc-air batteries.
Collapse
Affiliation(s)
- Dingrong Qiu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Huihui Wang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Tingting Ma
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Jiangdu Huang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Zhen Meng
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Dayong Fan
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Chris R. Bowen
- Department
of Mechanical Engineering, University of
Bath, BA2 7AY Bath, U.K.
| | - Huidan Lu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Yongping Liu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Sundaram Chandrasekaran
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| |
Collapse
|
18
|
Han Y, Wang F, Yan L, Luo L, Qin Y, Zhu C, Hao J, Chen Q, Zou X, Zhou Y, Xiang B. Dual-function additive enables a self-regulatory mechanism to balance cathode-anode interface demands in Zn‖MnO 2 batteries. Chem Sci 2024; 15:12336-12348. [PMID: 39118635 PMCID: PMC11304731 DOI: 10.1039/d4sc02626h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
The poor reversibility of the zinc (Zn) anodes and the irreversible deposition/dissolution of Mn2+/MnO2 significantly impede the commercialization of Zn-Mn aqueous batteries (ZMABs). In reducing the difference between the desired interfacial reaction environments of the cathode and anode, we found that they face the same problem of interference-the generation of irreversible corrosion products. Herein, we have introduced a novel self-regulatory mechanism. This mechanism involves the addition of sodium dihydrogen phosphate, which shifts from passive protection to active regulation. It effectively captures OH- ions, prevents corrosion product formation, and facilitates the in situ generation of a solid electrolyte interface (SEI) film. This modification also homogenizes Zn ion flow and improves the reversibility of Zn plating and stripping. Furthermore, a stable and slightly acidic environment has been established to stabilize the pH at the cathodic interface, mitigate corrosion product formation, and enhance the reversible deposition and dissolution of Mn2+/MnO2. With the optimal electrolyte, Zn‖Zn symmetric cells demonstrate stable operation for over 3000 hours at 1 mA cm-2, 1 mA h cm-2. Additionally, the Zn‖Cu cells maintain high reversibility after 1000 cycles, achieving an average coulombic efficiency (CE) of 99.76%. The assembled Zn‖MnO2 full cells exhibit exceptional cycling stability and rate performance. This work adopts the approach of seeking common ground and emphasizing the balance of cathode and anode interfacial requirements, which represents a new and significant insight for design of ZMABs with high reversibility and high cyclability.
Collapse
Affiliation(s)
- Yuying Han
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Fangzheng Wang
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Lijin Yan
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Liang Luo
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Yuan Qin
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Chong Zhu
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Jiangyu Hao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 China
| | - Qizhi Chen
- Guangxi Huiyuan Manganese Industry Co., Ltd Laibin 546138 Guangxi China
| | - Xuefeng Zou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University Guiyang 550018 Guizhou China
| | - Yang Zhou
- Analytical and Testing Center, Chongqing University Chongqing 401331 China
| | - Bin Xiang
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| |
Collapse
|
19
|
Ma G, Yuan W, Li X, Bi T, Niu L, Wang Y, Liu M, Wang Y, Shen Z, Zhang N. Organic Cations Texture Zinc Metal Anodes for Deep Cycling Aqueous Zinc Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408287. [PMID: 38967293 DOI: 10.1002/adma.202408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim+) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim+ featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H2 evolution to enable the compact electrodeposition. In addition, the formulated Bmim+-containing ZnSO4 electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim+-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm-2 with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim+-free electrolytes.
Collapse
Affiliation(s)
- Guoqiang Ma
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Wentao Yuan
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Xiaotong Li
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Tongqiang Bi
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Linhuan Niu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Yue Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Mengyu Liu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Zhaoxi Shen
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Ning Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
20
|
Shi X, Zeng J, Yi A, Wang F, Liu X, Lu X. Unveiling the Failure Mechanism of Zn Anodes in Zinc Trifluorosulfonate Electrolyte: The Role of Micelle-like Structures. J Am Chem Soc 2024; 146:20508-20517. [PMID: 38996190 DOI: 10.1021/jacs.4c07015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Zinc trifluorosulfonate [Zn(OTf)2] is considered as the most suitable zinc salt for aqueous Zn-ion batteries (AZIBs) but cannot support the long-term cycling of the Zn anode. Here, we reveal the micelle-like structure of the Zn(OTf)2 electrolyte and reunderstand the failing mechanism of the Zn anode. Since the solvated Zn2+ possesses a positive charge, it can spontaneously attract OTf- with the hydrophilic group of -SO3 and the hydrophobic group of -CF3 via electrostatic interaction and form a "micelle-like" structure, which is responsible for the poor desolvation kinetics and dendrite growth. To address these issues, an antimicelle-like structure is designed by using ethylene glycol monomethyl ether (EGME) as a cosolvent for highly reversible AZIBs. The modified electrolyte shows lower dissociation ability to Zn(OTf)2 and higher coordination tendency with Zn2+ compared to the Zn(OTf)2 electrolyte, resulting in the unique solvation structure of Zn2+(H2O)1.2(OTf-)2(EGME)2.8, which significantly reduces the charge of micelle, damages the micelle-like structure, and boosts the desolvation kinetics. Moreover, the reduction of EGME and OTf- can form a robust dual-layered SEI with high Zn2+ ion conductivity. Consequently, the Zn/Cu asymmetric coin cell using ZT-EGME can work at a high rate and a capacity of 50 mA cm-2 and 5 mA h cm-2 for more than 120 cycles, while its counterparts using ZT can barely work. Moreover, a 505.1 mA h pouch cell with practical parameters including a lean electrolyte supply of 15 mL A h-1 and an N/P ratio of ∼3.5 can work for 50 cycles.
Collapse
Affiliation(s)
- Xin Shi
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, the Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jianning Zeng
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, the Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ang Yi
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, the Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Fuxin Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China
| | - Xiaoqing Liu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, the Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
21
|
Peng H, Ge W, Ma X, Jiang X, Zhang K, Yang J. Surface Engineering on Zinc Anode for Aqueous Zinc Metal Batteries. CHEMSUSCHEM 2024; 17:e202400076. [PMID: 38429246 DOI: 10.1002/cssc.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Rechargeable aqueous zinc metal batteries (AZMBs) are considered as a potential alternative to lithium-ion batteries due to their low cost, high safety, and environmental friendliness. However, the Zn anodes in AZMBs face severe challenges, such as dendrite growth, metal corrosion, and hydrogen evolution, all of which are closely related to the Zn/electrolyte interface. This article offers a short review on surface passivation to alleviate the issues on the Zn anodes. The composition and structure of the surface layers significantly influence their functions and then the performance of the Zn anodes. The recent progresses are introduced, according to the chemical components of the passivation layers on the Zn anodes. Moreover, the challenges and prospects of surface passivation in stabilizing Zn anodes are discussed, providing valuable guidance for the development of AZMBs.
Collapse
Affiliation(s)
- Huili Peng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, P.R. China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P.R. China
| | - Wenjing Ge
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P.R. China
| | - Xiaojian Ma
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P.R. China
| | - Xiaolei Jiang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, P.R. China
| | - Kaiyuan Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, P.R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P.R. China
| |
Collapse
|
22
|
Lyu H, Zhao S, Liao C, Li G, Zhi J, Huang F. Electric Double Layer Oriented Eutectic Additive Design toward Stable Zn Anodes with a High Depth of Discharge. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400976. [PMID: 38740388 DOI: 10.1002/adma.202400976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Indexed: 05/16/2024]
Abstract
ZnSO4-based electrolytes for aqueous zinc ion batteries fail to meet practical application metrics due to hydrogen evolution reaction (HER) and dendrite growth. In this work, a highly polarized eutectic additive, glycerophosphorylcholine (GPC) is rationally designed, to regulate the electric double layer (EDL) structure for stable Zn anodes with a high depth of discharge (DOD). On one hand, GPC molecules with abundant hydroxyl groups can precisely regulate the hydrogen bond network in EDL to suppress HER. On the other hand, the enrichment of GPC at the interface is positively responsible for the negative charge density on the Zn surface, which leads to the formation of a robust ZnxPyOz-rich solid-electrolyte interphase and terminates dendrite growth in the charge-rich sites. This EDL-oriented eutectic additive engineering enables highly reversible and selectively (002)-textured Zn anodes to operate for over 1450 h at a high DOD of 45.3%. Meanwhile, a high-capacity (185.7 mAh g-1) aqueous Zn||VS2 full cell shows remarkable cycling stability over 220 cycles with an excellent capacity retention of 90.4% even at a low current density of 0.1 A g-1 (0.5 C). This work sheds light on electrolyte design and interface engineering for high-performance aqueous batteries.
Collapse
Affiliation(s)
- Huida Lyu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Siwei Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P. R. China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P. R. China
| | - Jian Zhi
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fuqiang Huang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Zhongke Institute of Strategic Emerging Materials, Yixing, Jiangsu, 214213, China
| |
Collapse
|
23
|
Xia S, Luo Q, Liu J, Yang X, Lei J, Shao J, Tang X. In Situ Spontaneous Construction of Zinc Phosphate Coating Layer Toward Highly Reversible Zinc Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310497. [PMID: 38351670 DOI: 10.1002/smll.202310497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Indexed: 07/19/2024]
Abstract
Aqueous zinc ion batteries have received widespread attention due to their merits of high safety, high theoretical specific capacity, low cost, and environmental benignity. Nevertheless, the irreversible issues of Zn anode deriving from side reactions and dendrite growth have hindered its commercialization in large-scale energy storage systems. Herein, a zinc phosphate tetrahydrate (Zn3(PO4)2·4H2O, ZnPO) coating layer is in situ formed on the bare Zn by spontaneous redox reactions at room temperature to tackle the above issues. Particularly, the dense and brick-like ZnPO layer can effectively separate the anode surface from the aqueous electrolyte, thus suppressing the serious side reactions. Moreover, the ZnPO layer with high ionic conductivity, high Zn2+ transference number, and low nucleation barrier permits rapid Zn2+ transport and enables uniform Zn deposition, ensuring dendrite-free Zn deposition. As a result, the ZnPO@Zn symmetric battery achieves a high Coulombic efficiency of 99.8% and displays ultrahigh cycle stability over 6000 h (> 8 months), far surpassing its counterparts. Furthermore, the ZnPO@Zn||MnO2 full battery exhibits excellent electrochemical performances. Therefore, this work provides a new reference for simple and large-scale preparation of highly reversible Zn metal anodes, and has great potential for practical applications.
Collapse
Affiliation(s)
- Shu Xia
- School of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qiuyang Luo
- School of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Junnan Liu
- School of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xingfu Yang
- School of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jie Lei
- School of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jiaojing Shao
- School of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xiaoning Tang
- School of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
24
|
Yang N, Gao Y, Bu F, Cao Q, Yang J, Cui J, Wang Y, Chen J, Liu X, Guan C. Backside Coating for Stable Zn Anode with High Utilization Rate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312934. [PMID: 38349956 DOI: 10.1002/adma.202312934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Stable Zn anodes with high utilization rate are urgently required to promote the specific and volumetric energy densities of Zn-ion batteries for practical applications. Herein, contrary to the widely utilized surface coating on Zn anodes, this work shows that a zinc foil with a backside coated layer delivers much enhanced cycling stability even under high depth of discharge. The backside coating significantly reduces stress concentration, accelerates heat diffusion, and facilitates electron transfer, thus effectively preventing dendrite growth and structural damage at high Zn utilization. As a result, the developed anode can be stably cycled for 334 h at 85.5% Zn utilization, which outperforms bare Zn and previously reported results on surface-coated Zn foils. An NVO-based full cell also shows stable performance with high Zn utilization rate (69.4%), low negative-positive electrodes ratio (1.44), and high specific/volumetric energy densities (155.8 Wh kg-1/178 Wh L-1), which accelerates the progress toward practical zinc-ion batteries.
Collapse
Affiliation(s)
- Nute Yang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Yong Gao
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Fan Bu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Qinghe Cao
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Jiayu Yang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jiaojiao Cui
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuxuan Wang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jipeng Chen
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiangye Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Cao Guan
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
25
|
Dong J, Su L, Peng H, Wang D, Zong H, Wang G, Yang J. Spontaneous Molecule Aggregation for Nearly Single-Ion Conducting Sol Electrolyte to Advance Aqueous Zinc Metal Batteries: The Case of Tetraphenylporphyrin. Angew Chem Int Ed Engl 2024; 63:e202401441. [PMID: 38533760 DOI: 10.1002/anie.202401441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Zn metal as a promising anode of aqueous batteries faces severe challenges from dendrite growth and side reactions. Here, tetraphenylporphyrin tetrasulfonic acid (TPPS) is explored as an electrolyte additive for advanced Zn anodes. It is interesting to note that TPPS spontaneously assembles into unique aggregates. As they adsorb on the Zn anode, the aggregates enhance the resistance to electrolyte percolation and dendrite growth compared to single molecules. Meanwhile, TPPS facilitates anion association in the solvation sheath of Zn2+, and boosts the transference number of Zn2+ up to 0.95. Therefore, anion-related side reactions and anion-induced electrode overpotentials are reduced accordingly. In this context, the electrolyte containing TPPS exhibits excellent electrochemical performance. Even under a high loading of MnO2 (25 mg cm-2), a limited Zn supply (N/P ratio=1.7), and a lean electrolyte (15 μL mAh-1), the full cells still represent a higher cumulative capacity compared to the reported data. The advantages of this electrolyte are also adapted to other cathode materials. The pouch cells of Zn||NaV3O8 ⋅ 1.5H2O realize a capacity of ~0.35 Ah at 0.4 C under harsh conditions.
Collapse
Affiliation(s)
- Jingjing Dong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Long Su
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Huili Peng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- School Chemistry and Chemical Engineering Linyi University, Linyi, 276000, P. R. China
| | - Dongdong Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Hanwen Zong
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gulian Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
26
|
Chen L, Xiao T, Yang JL, Liu Y, Xian J, Liu K, Zhao Y, Fan HJ, Yang P. In-Situ Spontaneous Electropolymerization Enables Robust Hydrogel Electrolyte Interfaces in Aqueous Batteries. Angew Chem Int Ed Engl 2024; 63:e202400230. [PMID: 38520070 DOI: 10.1002/anie.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
Hydrogels hold great promise as electrolytes for emerging aqueous batteries, for which establishing a robust electrode-hydrogel interface is crucial for mitigating side reactions. Conventional hydrogel electrolytes fabricated by ex situ polymerization through either thermal stimulation or photo exposure cannot ensure complete interfacial contact with electrodes. Herein, we introduce an in situ electropolymerization approach for constructing hydrogel electrolytes. The hydrogel is spontaneously generated during the initial cycling of the battery, eliminating the need of additional initiators for polymerization. The involvement of electrodes during the hydrogel synthesis yields well-bonded and deep infiltrated electrode-electrolyte interfaces. As a case study, we attest that, the in situ-formed polyanionic hydrogel in Zn-MnO2 battery substantially improves the stability and kinetics of both Zn anode and porous MnO2 cathode owing to the robust interfaces. This research provides insight to the function of hydrogel electrolyte interfaces and constitutes a critical advancement in designing highly durable aqueous batteries.
Collapse
Affiliation(s)
- Liangyuan Chen
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Tuo Xiao
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yipu Liu
- Key Laboratory of Pico Electron Microscopy of Hainan Province School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jinglin Xian
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Kang Liu
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Yan Zhao
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Peihua Yang
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
27
|
Chen Z, Wu Q, Han X, Wang C, Chen J, Hu T, He Q, Zhu X, Yuan D, Chen J, Zhang Y, Yang L, Ma Y, Zhao J. Converting Commercial Zn Foils into Single (002)-Textured Zn with Millimeter-Sized Grains for Highly Reversible Aqueous Zinc Batteries. Angew Chem Int Ed Engl 2024; 63:e202401507. [PMID: 38407548 DOI: 10.1002/anie.202401507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Rechargeable aqueous zinc batteries are promising but hindered by unfavorable dendrite growth and side reactions on zinc anodes. In this study, we demonstrate a fast melting-solidification approach for effectively converting commercial Zn foils into single (002)-textured Zn featuring millimeter-sized grains. The melting process eliminates initial texture, residual stress, and grain size variations in diverse commercial Zn foils, guaranteeing the uniformity of commercial Zn foils into single (002)-textured Zn. The single (002)-texture ensures large-scale epitaxial and dense Zn deposition, while the reduction in grain boundaries significantly minimizes intergranular reactions. These features enable large grain single (002)-textured Zn shows planar and dense Zn deposition under harsh conditions (100 mA cm-2, 100 mAh cm-2), impressive reversibility in Zn||Zn symmetric cell (3280 h under 1 mA cm-2, 830 h under 10 mAh cm-2), and long cycling stability over 180 h with a high depth of discharge value of 75 %. This study successfully addresses the issue of uncontrollable texture formation in Zn foils following routine annealing treatments with temperatures below the Zn melting point. The findings of this study establish a highly efficient strategy for fabricating highly reversible single (002)-textured Zn anodes.
Collapse
Affiliation(s)
- Zibo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Qiang Wu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Xuran Han
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Cheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jialu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Tao Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Qian He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Xinyue Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Du Yuan
- College of Materials Science and Engineering, Changsha University of Science and Technology, Hunan, 410004, P. R. China
| | - Jianyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yanwen Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Suzhou Vocational Institute of Industrial Technology, Suzhou, 215104, P. R. China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Xiao J, Yuan C, Xiang L, Li X, Zhu L, Zhan X. Design Strategies toward High-Utilization Zinc Anodes for Practical Zinc-Metal Batteries. Chemistry 2024; 30:e202304149. [PMID: 38189550 DOI: 10.1002/chem.202304149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
Aqueous Zn-metal batteries (AZMBs) hold a promise as the next-generation energy storage devices due to their low cost and high specific energy. However, the actual energy density falls far below the requirements of commercial AZMBs due to the use of excessive Zn as anode and the associated issues including dendritic growth and side reactions. Reducing the N/P ratio (negative capacity/positive capacity) is an effective approach to achieve high energy density. A significant amount of research has been devoted to increasing the cathode loading and specific capacity or tuning the Zn anode utilization to achieve low N/P ratio batteries. Nevertheless, there is currently a lack of comprehensive overview regarding how to enhance the utilization of the Zn anode to balance the cycle life and energy density of AZMBs. In this review, we summarize the challenges faced in achieving high-utilization Zn anodes and elaborate on the modifying strategies for the Zn anode to lower the N/P ratio. The current research status and future prospects for the practical application of high-performance AZMBs are proposed at the end of the review.
Collapse
Affiliation(s)
- Jin Xiao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| | - Chenbo Yuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| | - Le Xiang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| | - Xiutao Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| | - Lingyun Zhu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| | - Xiaowen Zhan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| |
Collapse
|
29
|
Zhang Z, Luo D, Sun R, Gao Y, Wang D, Li Z, Kang X. Multifunctionalized Supramolecular Cyclodextrin Additives Boosting the Durability of Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17626-17636. [PMID: 38552160 DOI: 10.1021/acsami.4c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The poor cycling stability of aqueous zinc-ion batteries hinders their application in large-scale energy storage due to uncontrollable dendrite growth and harmful hydrogen evolution reactions. Here, we designed and synthesized an electrolyte additive, N-methylimidazolium-β-cyclodextrin p-toluenesulfonate (NMI-CDOTS). The cations of NMI-CD+ are more easily adsorbed on the abrupt Zn surface to regulate the deposition of Zn2+ and reduce dendrite generation under the combined action of the unique cavity structure with abundant hydroxyl groups and the electrostatic force. Meanwhile, p-toluenesulfonate (OTS-) is able to change the Zn2+ solvation structure and suppress the hydrogen evolution reaction by the strong interaction of Zn2+ and OTS-. Benefiting from the synergistic role of NMI-CD+ and OTS-, the Zn||Zn symmetric cell exhibits superior cycling performance as high as 3800 h under 1 mA cm-2 and 1 mA h cm-2. The Zn||V2O5 full battery also shows a high specific capacity (198.3 mA h g-1) under 2.0 A g-1 even after 1500 cycles, and its Coulomb efficiency is nearly 100% during the charging and discharging procedure. These multifunctional composite strategies open up possibilities for the commercial application of aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Zhaolong Zhang
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Dan Luo
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Rongkun Sun
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yizhan Gao
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Da Wang
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Zhi Li
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Xiaohong Kang
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| |
Collapse
|
30
|
Niu Y, Chang L, Sun Q, Liu Y, Nie W, Duan T, Lu X, Cheng H. Manipulating Zn Metal Texture with Guided Zincophilic Sites via Electrochemical Stripping for Dendrite-Free Zn Anodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6988-6997. [PMID: 38310560 DOI: 10.1021/acsami.3c14747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Constructing a three-dimensional (3D) structure along with Zn (002) texture selective exposure is a promising strategy to tackle the issues faced by Zn metal anodes. Herein, for the first time, we proposed an electrochemical stripping strategy to achieve controlled modification of the texture and microstructure of zinc foils in one step, building a hierarchical structure with (002) texture preferred exposed Zn (SZ). The SZ with favorable zincophilic properties not only can reduce the concentration polarization at the interface but also allow Zn to grow horizontally on the edge of the (002) texture by guiding the adsorption sites for Zn2+. Moreover, the honeycomb-like structure is beneficial to rearrange the distribution of the Zn2+ flux as well as alleviating stress changes during cycling. Thus, the SZ||Cu cell exhibits excellent stability with a Coulombic efficiency of 99.76% over 1800 cycles. The SZ||NaV3O8·xH2O cell with inconspicuous self-discharge effect maintains a high areal capacity of 3.67 mA h cm-2 even after 700 cycles with a low N/P ratio of 3.6. This work achieves texture architecture and structure designing on Zn foils simultaneously by metallurgical electrochemical methods and opens up a potential strategy to implement the practicality of zinc metal anodes.
Collapse
Affiliation(s)
- Yunjiao Niu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Linhui Chang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Qiangchao Sun
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yanbo Liu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Nie
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Tong Duan
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Hongwei Cheng
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
31
|
Liu X, Guo Y, Ning F, Liu Y, Shi S, Li Q, Zhang J, Lu S, Yi J. Fundamental Understanding of Hydrogen Evolution Reaction on Zinc Anode Surface: A First-Principles Study. NANO-MICRO LETTERS 2024; 16:111. [PMID: 38321305 PMCID: PMC11250978 DOI: 10.1007/s40820-024-01337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/16/2023] [Indexed: 02/08/2024]
Abstract
Hydrogen evolution reaction (HER) has become a key factor affecting the cycling stability of aqueous Zn-ion batteries, while the corresponding fundamental issues involving HER are still unclear. Herein, the reaction mechanisms of HER on various crystalline surfaces have been investigated by first-principle calculations based on density functional theory. It is found that the Volmer step is the rate-limiting step of HER on the Zn (002) and (100) surfaces, while, the reaction rates of HER on the Zn (101), (102) and (103) surfaces are determined by the Tafel step. Moreover, the correlation between HER activity and the generalized coordination number ([Formula: see text]) of Zn at the surfaces has been revealed. The relatively weaker HER activity on Zn (002) surface can be attributed to the higher [Formula: see text] of surface Zn atom. The atomically uneven Zn (002) surface shows significantly higher HER activity than the flat Zn (002) surface as the [Formula: see text] of the surface Zn atom is lowered. The [Formula: see text] of surface Zn atom is proposed as a key descriptor of HER activity. Tuning the [Formula: see text] of surface Zn atom would be a vital strategy to inhibit HER on the Zn anode surface based on the presented theoretical studies. Furthermore, this work provides a theoretical basis for the in-depth understanding of HER on the Zn surface.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute for Sustainable Energy & Department of Chemistry, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yiming Guo
- Institute for Sustainable Energy & Department of Chemistry, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Fanghua Ning
- Institute for Sustainable Energy & Department of Chemistry, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Yuyu Liu
- Institute for Sustainable Energy & Department of Chemistry, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Siqi Shi
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qian Li
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jiujun Zhang
- Institute for Sustainable Energy & Department of Chemistry, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Shigang Lu
- Institute for Sustainable Energy & Department of Chemistry, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jin Yi
- Institute for Sustainable Energy & Department of Chemistry, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
32
|
Zhang J, Sun J, Yang D, Ha S, Ma T, Liu H, Shi X, Guo D, Wang Y, Wei Y. Trade-Off between Rough and Smooth Electrode Surfaces toward Stable Zn Stripping/Plating in Aqueous Electrolytes. NANO LETTERS 2024; 24:688-695. [PMID: 38180811 DOI: 10.1021/acs.nanolett.3c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The effects of surface roughness on the performance of the Zn metal anode in aqueous electrolytes are investigated by experiments and computational simulations. Smooth surfaces can homogenize the nucleation and growth of Zn, which helps to form a flat Zn anode under high current density. In spite of these advantages, the whole surface of the smooth electrode serves as the reactive contact area for parasitic reactions, generating severe hydrogen evolution, corrosion, and byproduct formation, which seriously hinder the long-term cycle stability of the Zn anode. To trade off this double-sided effect, we identify a medium degree of surface roughness that could stabilize the Zn anode for 1000 h cycling at 1.0 mAh cm-2. The electrode also enabled stable cycling for 800 h at a high current density of 5.0 mAh cm-2. This naked Zn metal anode with optimized surface roughness holds great promise for direct use in aqueous zinc ion batteries.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Jie Sun
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Di Yang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Shixian Ha
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11790, United States
| | - Teng Ma
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Han Liu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Xuejian Shi
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Dongxu Guo
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
| |
Collapse
|
33
|
Ge W, Peng H, Dong J, Wang G, Cui L, Sun W, Ma X, Yang J. Zn(002)-preferred and pH-buffering triethanolamine as electrolyte additive for dendrite-free Zn anodes. Chem Commun (Camb) 2024; 60:750-753. [PMID: 38116817 DOI: 10.1039/d3cc05307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Zn anodes of aqueous batteries face severe challenges from side reactions and dendrite growth. Here, triethanolamine (TEOA) is developed as an electrolyte additive to address these challenges. It enhances the exposure of Zn(002) and diminishes the change in pH. Therefore, the electrolyte containing TEOA shows improved electrochemical performance.
Collapse
Affiliation(s)
- Wenjing Ge
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Huili Peng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Jingjing Dong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Gulian Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Lifeng Cui
- Shandong Hualu-Hengsheng Chemical Co. Ltd, Dezhou 253024, P. R. China
| | - Wei Sun
- Shandong Hualu-Hengsheng Chemical Co. Ltd, Dezhou 253024, P. R. China
| | - Xiaojian Ma
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
34
|
Li B, Ruan P, Xu X, He Z, Zhu X, Pan L, Peng Z, Liu Y, Zhou P, Lu B, Dai L, Zhou J. Covalent Organic Framework with 3D Ordered Channel and Multi-Functional Groups Endows Zn Anode with Superior Stability. NANO-MICRO LETTERS 2024; 16:76. [PMID: 38175455 PMCID: PMC10767043 DOI: 10.1007/s40820-023-01278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Achieving a highly robust zinc (Zn) metal anode is extremely important for improving the performance of aqueous Zn-ion batteries (AZIBs) for advancing "carbon neutrality" society, which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction, corrosion, and passivation, etc. Herein, an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups (COF-S-F) is developed on Zn metal (Zn@COF-S-F) as the artificial solid electrolyte interface (SEI). Sulfonic acid group (- SO3H) in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions, and the three-dimensional channel with fluoride group (-F) can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects, endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions. Consequently, Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage (50.5 mV) at the current density of 1.5 mA cm-2. Zn@COF-S-F|MnO2 cell delivers the discharge specific capacity of 206.8 mAh g-1 at the current density of 1.2 A g-1 after 800 cycles with high-capacity retention (87.9%). Enlightening, building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs.
Collapse
Affiliation(s)
- Bin Li
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Pengchao Ruan
- School of Materials Science and Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Xieyu Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China.
| | - Xinyan Zhu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Liang Pan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Ziyu Peng
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Yangyang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Peng Zhou
- Hunan Provincial Key Defense Laboratory of High Temperature Wear-Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
35
|
Yuan W, Nie X, Wang Y, Li X, Ma G, Wang Y, Shen S, Zhang N. Orientational Electrodeposition of Highly (002)-Textured Zinc Metal Anodes Enabled by Iodide Ions for Stable Aqueous Zinc Batteries. ACS NANO 2023. [PMID: 37967020 DOI: 10.1021/acsnano.3c08095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Regulating the crystallographic texture of the zinc (Zn) metal anode is promising to promote Zn reversibility in aqueous electrolytes, but the direct fabrication of specific textured Zn still remains challenging. Herein, we report a facile iodide ion (I-)-assisted electrodeposition strategy that can scalably fabricate highly (002) crystal plane-textured Zn metal anode (H-(002)-Zn). Theoretical and experimental characterizations demonstrate that the presence of I- additives can significantly elevate the growth rate of the Zn (100) plane, homogenize the Zn nucleation, and promote the plating kinetics, thus enabling the uniform H-(002)-Zn electrodeposition. Taking the electrolytic cell with the conventional ZnSO4-based electrolyte and commercial Cu substrate as a model system, the Zn texture gradually transforms from (101) to (002) as the increase of NaI additive concentration. In the optimized 1 M ZnSO4 + 0.8 M NaI electrolyte, the as-prepared H-(002)-Zn features a compact structure and an ultrahigh intensity ratio of (002) to (101) signal without containing the (100) signal. The free-standing H-(002)-Zn electrode manifests stronger resistance to interfacial side reactions than the conventional (101)-textured Zn electrode, thus delivering a high efficiency of 99.88% over 400 cycles and ultralong cycling lifespan over 6700 h (>9 months at 1 mA cm-2) and assuring the stable operation of full Zn batteries. This work will enlighten the efficient electrosynthesis of high-performance Zn anodes for practical aqueous Zn batteries.
Collapse
Affiliation(s)
- Wentao Yuan
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xueyu Nie
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xiaotong Li
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Guoqiang Ma
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yue Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shigang Shen
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Ning Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|