1
|
Li Y, Meng S, Dong N, Wei Y, Wang Y, Ren Y, Li X, Liu D, You T. Wavelength-Resolved Janus Biosensing Interface for Ratiometric Electrochemical Analysis. Anal Chem 2024; 96:2582-2589. [PMID: 38294965 DOI: 10.1021/acs.analchem.3c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The Janus interface, comprising multiple functional heterointerfaces with contrasting functionalities within a single interface, has recently garnered widespread research interest. Herein, a Janus biosensing interface is obtained via wavelength-resolved laser illumination. Deoxyribonucleic acid bridges the electrochemical probe of methylene blue (MB) and plasmonic gold nanoparticles (AuNPs), achieving a sensitive detection performance. MB shows differential electrochemical signals under front (I532front) and back (I650back) laser illumination at 532 and 650 nm, respectively, owing to the selective wavelength-resolved effect. Thus, the presence of a wavelength-resolved laser enabled the design of a biosensing interface with Janus properties. The change in the distance between MB and AuNPs induced by aflatoxin B1 (AFB1) indicates that a sensitive response of the Janus biosensing interface can be achieved. A ratiometric strategy is introduced to describe the electrochemical signals of the I532front and I650back for improved robustness. The obtained linear range is 0.0005-50 ng mL-1, with a detection limit of 0.175 pg mL-1. Our study demonstrated that the wavelength-resolved Janus interface enables an electrochemical biosensor with excellent sensitivity. This finding provides an efficient approach for improving biosensor performance.
Collapse
Affiliation(s)
- Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Ren
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|