1
|
Chang JJ, Tian X, Cademartiri L. Plasma-based post-processing of colloidal nanocrystals for applications in heterogeneous catalysis. NANOSCALE 2024; 16:12735-12749. [PMID: 38913069 DOI: 10.1039/d4nr01458h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
This review summarizes the work on the use of plasmas to post-process nanostructures, in particular colloidal nanocrystals, as promising candidates for applications of heterogeneous catalysis. Using plasma to clean or modify the surface of nanostructures is a more precisely controlled method compared to other conventional methods, which is preferable when strict requirements for nanostructure morphology or chemical composition are necessary. The ability of plasma post-processing to create mesoporous materials with high surface areas and controlled microstructure, surfaces, and interfaces has transformational potential in catalysis and other applications that leverage surface/interface processes.
Collapse
Affiliation(s)
- Julia J Chang
- Department of Materials Science & Engineering, Iowa State University of Science and Technology, 2220 Hoover Hall, Ames, IA, 50011, USA
| | - Xinchun Tian
- Department of Materials Science & Engineering, Iowa State University of Science and Technology, 2220 Hoover Hall, Ames, IA, 50011, USA
| | - Ludovico Cademartiri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43012, Parma, Italy.
| |
Collapse
|
2
|
Pan JJ, Zhu HT, Chen J, Ma XQ, Wang AJ, Yuan PX, Feng JJ. The dual ECL signal enhancement strategy of Pd nanoparticles attached covalent organic frameworks and exonuclease cycling reaction for the ultrasensitive detection of progesterone. Talanta 2024; 274:125934. [PMID: 38574533 DOI: 10.1016/j.talanta.2024.125934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Nowadays, novel and efficient signal amplification strategy in electrochemiluminescence (ECL) platform is urgently needed to enhance the sensitivity of biosensor. In this work, the dual ECL signal enhancement strategy was constructed by the interactions of Pd nanoparticles attached covalent organic frameworks (Pd NPs@COFs) with tris (bipyridine) ruthenium (RuP) and Exonuclease III (Exo.III) cycle reaction. Within this strategy, the COFs composite was generated from the covalent reaction between 2-nitro-1,4-phenylenediamine (NPD) and trialdehyde phloroglucinol (Tp), and then animated by glutamate (Glu) to attach the Pd NPs. Next, the "signal on" ECL biosensor was constructed by the coordination assembly of thiolation capture DNA (cDNA) onto the Pd NPs@COFs modified electrode. After the aptamer recognition of progesterone (P4) with hairpin DNA 1 (HP1), the Exo. III cycle reaction was initiated with HP2 to generate free DNA, which hybridized with cDNA to form double-stranded DNA (dsDNA). For that, the RuP was embedded into the groove of dsDNA and achieved the ultrasensitive detection of P4 with a lower limit of detection (LOD) down to 0.45 pM, as well as the excellent selectivity and stability. This work expands the COFs-based materials application in ECL signal amplification and valuable DNA cyclic reaction in biochemical testing field.
Collapse
Affiliation(s)
- Jin-Jie Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hao-Tian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jun Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Qi Ma
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
3
|
Li G, Zakharov DN, Sikder S, Xu Y, Tong X, Dimitrakellis P, Boscoboinik JA. In Situ Monitoring of Non-Thermal Plasma Cleaning of Surfactant Encapsulated Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:290. [PMID: 38334560 PMCID: PMC10856489 DOI: 10.3390/nano14030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Surfactants are widely used in the synthesis of nanoparticles, as they have a remarkable ability to direct their growth to obtain well-defined shapes and sizes. However, their post-synthesis removal is a challenge, and the methods used often result in morphological changes that defeat the purpose of the initial controlled growth. Moreover, after the removal of surfactants, the highly active surfaces of nanomaterials may undergo structural reconstruction by exposure to a different environment. Thus, ex situ characterization after air exposure may not reflect the effect of the cleaning methods. Here, combining X-ray photoelectron spectroscopy, in situ infrared reflection absorption spectroscopy, and environmental transmission electron microscopy measurements with CO probe experiments, we investigated different surfactant-removal methods to produce clean metallic Pt nanoparticles from surfactant-encapsulated ones. It was demonstrated that both ultraviolet-ozone (UV-ozone) treatment and room temperature O2 plasma treatment led to the formation of Pt oxides on the surface after the removal of the surfactant. On the other hand, when H2 was used for plasma treatment, both the Pt0 oxidation state and nanoparticle size distribution were preserved. In addition, H2 plasma treatment can reduce Pt oxides after O2-based treatments, resulting in metallic nanoparticles with clean surfaces. These findings provide a better understanding of the various options for surfactant removal from metal nanoparticles and point toward non-thermal plasmas as the best route if the integrity of the nanoparticle needs to be preserved.
Collapse
Affiliation(s)
- Gengnan Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
| | - Dmitri N. Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
| | - Sayantani Sikder
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
| | - Yixin Xu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
| | - Panagiotis Dimitrakellis
- Catalysis Center for Energy Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA;
| | - Jorge Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
| |
Collapse
|