1
|
Nasrin SR, Yamashita T, Ikeguchi M, Torisawa T, Oiwa K, Sada K, Kakugo A. Tensile Stress on Microtubules Facilitates Dynein-Driven Cargo Transport. NANO LETTERS 2024. [PMID: 38916205 DOI: 10.1021/acs.nanolett.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mechanical stress significantly affects the physiological functions of cells, including tissue homeostasis, cytoskeletal alterations, and intracellular transport. As a major cytoskeletal component, microtubules respond to mechanical stimulation by altering their alignment and polymerization dynamics. Previously, we reported that microtubules may modulate cargo transport by one of the microtubule-associated motor proteins, dynein, under compressive mechanical stress. Despite the critical role of tensile stress in many biological functions, how tensile stress on microtubules regulates cargo transport is yet to be unveiled. The present study demonstrates that the low-level tensile stress-induced microtubule deformation facilitates dynein-driven transport. We validate our experimental findings using all-atom molecular dynamics simulation. Our study may provide important implications for developing new therapies for diseases that involve impaired intracellular transport.
Collapse
Affiliation(s)
- Syeda Rubaiya Nasrin
- Graduate School of Science, Department of Physics and Astronomy, Kyoto University, Kyoto, 606-8152, Japan
| | - Takefumi Yamashita
- Department of Physical University, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, 411-8540, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Science, Department of Physics and Astronomy, Kyoto University, Kyoto, 606-8152, Japan
| |
Collapse
|
2
|
Kalra AP, Eakins BB, Patel SD, Ciniero G, Rezania V, Shankar K, Tuszynski JA. All Wired Up: An Exploration of the Electrical Properties of Microtubules and Tubulin. ACS NANO 2020; 14:16301-16320. [PMID: 33213135 DOI: 10.1021/acsnano.0c06945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microtubules are hollow, cylindrical polymers of the protein α, β tubulin, that interact mechanochemically with a variety of macromolecules. Due to their mechanically robust nature, microtubules have gained attention as tracks for precisely directed transport of nanomaterials within lab-on-a-chip devices. Primarily due to the unusually negative tail-like C-termini of tubulin, recent work demonstrates that these biopolymers are also involved in a broad spectrum of intracellular electrical signaling. Microtubules and their electrostatic properties are discussed in this Review, followed by an evaluation of how these biopolymers respond mechanically to electrical stimuli, through microtubule migration, electrorotation and C-termini conformation changes. Literature focusing on how microtubules act as nanowires capable of intracellular ionic transport, charge storage, and ionic signal amplification is reviewed, illustrating how these biopolymers attenuate ionic movement in response to electrical stimuli. The Review ends with a discussion on the important questions, challenges, and future opportunities for intracellular microtubule-based electrical signaling.
Collapse
Affiliation(s)
- Aarat P Kalra
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
| | - Boden B Eakins
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Sahil D Patel
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Gloria Ciniero
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
3
|
Nasrin SR, Kabir AMR, Sada K, Kakugo A. Effect of microtubule immobilization by glutaraldehyde on kinesin-driven cargo transport. Polym J 2020. [DOI: 10.1038/s41428-020-0309-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Affiliation(s)
- Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Tjioe M, Ryoo H, Ishitsuka Y, Ge P, Bookwalter C, Huynh W, McKenney RJ, Trybus KM, Selvin PR. Magnetic Cytoskeleton Affinity Purification of Microtubule Motors Conjugated to Quantum Dots. Bioconjug Chem 2018; 29:2278-2286. [PMID: 29932650 PMCID: PMC6452869 DOI: 10.1021/acs.bioconjchem.8b00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We develop magnetic cytoskeleton affinity (MiCA) purification, which allows for rapid isolation of molecular motors conjugated to large multivalent quantum dots, in miniscule quantities, which is especially useful for single-molecule applications. When purifying labeled molecular motors, an excess of fluorophores or labels is usually used. However, large labels tend to sediment during the centrifugation step of microtubule affinity purification, a traditionally powerful technique for motor purification. This is solved with MiCA, and purification time is cut from 2 h to 20 min, a significant time-savings when it needs to be done daily. For kinesin, MiCA works with as little as 0.6 μg protein, with yield of ∼27%, compared to 41% with traditional purification. We show the utility of MiCA purification in a force-gliding assay with kinesin, allowing, for the first time, simultaneous determination of whether the force from each motor in a multiple-motor system drives or hinders microtubule movement. Furthermore, we demonstrate rapid purification of just 30 ng dynein-dynactin-BICD2N-QD (DDB-QD), ordinarily a difficult protein-complex to purify.
Collapse
Affiliation(s)
| | | | | | | | | | - Walter Huynh
- Department of Cellular and Molecular Pharmacology , University of California, San Francisco , San Francisco , California 94143 , United States
| | - Richard J McKenney
- Molecular & Cellular Biology , University of California, Davis , La Jolla , California 92093 , United States
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics , University of Vermont , Burlington , Vermont 05405 , United States
| | | |
Collapse
|
6
|
Kim K, Yoshinaga N, Bhattacharyya S, Nakazawa H, Umetsu M, Teizer W. Large-scale chirality in an active layer of microtubules and kinesin motor proteins. SOFT MATTER 2018; 14:3221-3231. [PMID: 29670958 DOI: 10.1039/c7sm02298k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During the early developmental process of organisms, the formation of left-right laterality requires a subtle mechanism, as it is associated with other principal body axes. Any inherent chiral feature in an egg cell can in principal trigger this spontaneous breaking of chiral symmetry. Individual microtubules, major cytoskeletal filaments, are known as chiral objects. However, to date there lacks convincing evidence of a hierarchical connection of the molecular nature of microtubules to large-scale chirality, particularly at the length scale of an entire cell. Here we assemble an in vitro active layer, consisting of microtubules and kinesin motor proteins, on a glass surface. Upon inclusion of methyl cellulose, the layered system exhibits a long-range active nematic phase, characterized by the global alignment of gliding MTs. This nematic order spans over the entire system size in the millimeter range and, remarkably, allows hidden collective chirality to emerge as counterclockwise global rotation of the active MT layer. The analysis based on our theoretical model suggests that the emerging global nematic order results from the local alignment of MTs, stabilized by methyl cellulose. It also suggests that the global rotation arises from the MTs' intrinsic curvature, leading to preferential handedness. Given its flexibility, this layered in vitro cytoskeletal system enables the study of membranous protein behavior responsible for important cellular developmental processes.
Collapse
Affiliation(s)
- Kyongwan Kim
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Oliveira D, de Melo FM, Toma HE. One-pot single step to label microtubule with MPA-capped CdTe quantum dots. Micron 2018; 108:19-23. [DOI: 10.1016/j.micron.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
|
8
|
Bhattacharyya S, Kim K, Teizer W. Remodeling Tau and Prion Proteins Using Nanochaperons. ACTA ACUST UNITED AC 2017; 1:e1700108. [PMID: 32646192 DOI: 10.1002/adbi.201700108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/16/2017] [Indexed: 11/08/2022]
Abstract
There is increasing evidence that tau protein behaves in a prion-like manner in tauopathy. The stabilization of tau protein using a small molecular compound can limit tauopathy associated morbidity that advances with ageing. Here, a lab-on-a-chip experiment is reported, where gold citrate nanoparticles (5 nm, AuNPs) can remodel mutant tau protein (P301L) and prion, thus resolving the mutant tau- and prion-mediated impairment of kinesin cargo transport on microtubules. It is found that tau protein is overexpressed in Alzheimer's disease (AD) patient serum samples and the tau conformational change can also be affected in human serum samples of AD when treated with AuNPs ex vivo. Similarly, AuNPs reorganizing the prion protein and inducing conformational changes of prions in AD serum have been observed, while having no effect on alpha-synuclein in Parkinson patient serum. The mapping of AD serum mediated traffic jams, using particle tracking and mean square displacement analysis, and the observed recovery of uninterrupted processive motor functions by AuNP treatment show that kinesin cargo assays might be a useful method for future ex vivo validation of a targeted therapy against tauopathy before administration, a viable option to combat various neurodegenerative disorders arising from the susceptibility of amyloidogenic proteins toward aggregation.
Collapse
Affiliation(s)
- Sanjib Bhattacharyya
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Kyongwan Kim
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Winfried Teizer
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.,Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
9
|
Kim K, Sikora A, Nakazawa H, Umetsu M, Hwang W, Teizer W. Isomorphic coalescence of aster cores formed in vitro from microtubules and kinesin motors. Phys Biol 2016; 13:056002. [PMID: 27652512 DOI: 10.1088/1478-3975/13/5/056002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report fluorescence microscopy studies of the formation of aster-like structures emerging from a cellular element-based active system and a novel analysis of the aster condensation. The system consists of rhodamine labeled microtubules which are dynamically coupled by functionalized kinesin motor proteins cross-linked via streptavidin-coated quantum dots (QDs). The aster-shaped objects contain core structures. The cores are aggregates of the QD-motor protein complexes, and result from the dynamic condensation of sub-clusters that are connected to each other randomly. The structural specificity of the aster core reflects a configuration of the initial connectivity between sub-clusters. Detailed image analysis allows us to extract a novel correlation between the condensation speed and the sub-cluster separation. The size of the core is scaled down during the condensation process, following a power law dependence on the distance between sub-clusters. The exponent of the power law is close to two, as expected from a geometric model. This single exponent common to all the contractile lines implies that there exists a time regime during which an isomorphic contraction of the aster core continues during the condensation process. We analyze the observed contraction by using a model system with potential applicability in a wide range of emergent phenomena in randomly coupled active networks, which are prevalent in the cellular environment.
Collapse
Affiliation(s)
- K Kim
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Japan
| | | | | | | | | | | |
Collapse
|
10
|
VanDelinder V, Brener S, Bachand GD. Mechanisms Underlying the Active Self-Assembly of Microtubule Rings and Spools. Biomacromolecules 2016; 17:1048-56. [DOI: 10.1021/acs.biomac.5b01684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Virginia VanDelinder
- Center for Integrated Nanotechnologies, Sandia National Laboratories, P.O. Box
5800, MS 1303, Albuquerque, New
Mexico 87111, United States
| | - Stephanie Brener
- Center for Integrated Nanotechnologies, Sandia National Laboratories, P.O. Box
5800, MS 1303, Albuquerque, New
Mexico 87111, United States
| | - George D. Bachand
- Center for Integrated Nanotechnologies, Sandia National Laboratories, P.O. Box
5800, MS 1303, Albuquerque, New
Mexico 87111, United States
| |
Collapse
|