1
|
Zhang Y, Qu W, Peng G, Zhang C, Liu Z, Liu J, Li S, Wu H, Meng L, Gao L. Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering. MATERIALS 2022; 15:ma15020487. [PMID: 35057205 PMCID: PMC8780573 DOI: 10.3390/ma15020487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023]
Abstract
Aberration-corrected scanning transmission electron microscopy (AC-STEM) has evolved into the most powerful characterization and manufacturing platform for all materials, especially functional materials with complex structural characteristics that respond dynamically to external fields. It has become possible to directly observe and tune all kinds of defects, including those at the crucial atomic scale. In-depth understanding and technically tailoring structural defects will be of great significance for revealing the structure-performance relation of existing high-property materials, as well as for foreseeing paths to the design of high-performance materials. Insights would be gained from piezoelectrics and thermoelectrics, two representative functional materials. A general strategy is highlighted for optimizing these functional materials’ properties, namely defect engineering at the atomic scale.
Collapse
Affiliation(s)
- Yang Zhang
- Instrumental Analysis Center of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an 710049, China; (L.M.); (L.G.)
- Correspondence:
| | - Wanbo Qu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Guyang Peng
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Chenglong Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Ziyu Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Juncheng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Shurong Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Haijun Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (W.Q.); (G.P.); (C.Z.); (Z.L.); (J.L.); (S.L.); (H.W.)
| | - Lingjie Meng
- Instrumental Analysis Center of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an 710049, China; (L.M.); (L.G.)
| | - Lumei Gao
- Instrumental Analysis Center of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an 710049, China; (L.M.); (L.G.)
| |
Collapse
|
2
|
Wu H, Zhao X, Guan C, Zhao LD, Wu J, Song D, Li C, Wang J, Loh KP, Venkatesan TV, Pennycook SJ. The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802402. [PMID: 30306651 DOI: 10.1002/adma.201802402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Defects in crystalline materials have a tremendous impact on their functional behavior. Controlling and tuning of these imperfections can lead to marked improvements in their physical, electrical, magnetic, and optical properties. Thanks to the development of aberration-corrected (scanning) transmission electron microscopy (STEM/TEM), direct visualization of defects at multiple length scales has now become possible, including those critically important defects at the atomic scale. Thorough understanding of the nature and dynamics of these defects is the key to unraveling the fundamental origins of structure-property relationships. Such insight can therefore allow the creation of new materials with desired properties through appropriate defect engineering. Herein, several examples of new insights obtained from representative functional materials are shown, including piezoelectrics/ferroelectrics, oxide interfaces, thermoelectrics, electrocatalysts, and 2D materials.
Collapse
Affiliation(s)
- Haijun Wu
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117574, Singapore
| | - Xiaoxu Zhao
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117574, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 13 Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore, 117456, Singapore
| | - Cao Guan
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117574, Singapore
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jiagang Wu
- Department of Materials Science, Sichuan University, Chengdu, 610064, China
| | - Dongsheng Song
- NUSNNI-NanoCore, National University of Singapore, Singapore, 117411, Singapore
| | - Changjian Li
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117574, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117574, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| | - Thirumalai V Venkatesan
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117574, Singapore
- NUSNNI-NanoCore, National University of Singapore, Singapore, 117411, Singapore
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117574, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 13 Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore, 117456, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| |
Collapse
|