1
|
Zhu T, Liu K, Zhang Y, Meng S, He M, Zhang Y, Yan M, Dong X, Li X, Jiang M, Xu H. Gate Voltage- and Bias Voltage-Tunable Staggered-Gap to Broken-Gap Transition Based on WSe 2/Ta 2NiSe 5 Heterostructure for Multimode Optoelectronic Logic Gate. ACS NANO 2024; 18:11462-11473. [PMID: 38632853 DOI: 10.1021/acsnano.4c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Two-dimensional (2D) materials with superior properties exhibit tremendous potential in developing next-generation electronic and optoelectronic devices. Integrating various functions into one device is highly expected as that endows 2D materials great promise for more Moore and more-than-Moore device applications. Here, we construct a WSe2/Ta2NiSe5 heterostructure by stacking the p-type WSe2 and the n-type narrow gap Ta2NiSe5 with the aim to achieve a multifunction optoelectronic device. Owing to the large interface potential barrier, the heterostructure device reveals a prominent diode feature with a large rectify ratio (7.6 × 104) and a low dark current (10-12 A). Especially, gate voltage- and bias voltage-tunable staggered-gap to broken-gap transition is achieved on the heterostructure device, which enables gate voltage-tunable forward and reverse rectifying features. As results, the heterostructure device exhibits superior self-powered photodetection properties, including a high detectivity of 1.08 × 1010 Jones and a fast response time of 91 μs. Additionally, the intrinsic structural anisotropy of Ta2NiSe5 endows the heterostructure device with strong polarization-sensitive photodetection and high-resolution polarization imaging. Based on these characteristics, a multimode optoelectronic logic gate is realized on the heterostructure via synergistically modulating the light on/off, polarization angle, gate voltage, and bias voltage. This work shed light on the future development of constructing high-performance multifunctional optoelectronic devices.
Collapse
Affiliation(s)
- Tao Zhu
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Kai Liu
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yao Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Si Meng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Mengfei He
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yingli Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
| | - Minglu Yan
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
| | - Xiaoxiang Dong
- Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaobo Li
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Man Jiang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
| | - Hua Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
2
|
Hyde PA, Cen J, Cassidy SJ, Rees NH, Holdship P, Smith RI, Zhu B, Scanlon DO, Clarke SJ. Lithium Intercalation into the Excitonic Insulator Candidate Ta 2NiSe 5. Inorg Chem 2023. [PMID: 37466301 PMCID: PMC10394660 DOI: 10.1021/acs.inorgchem.3c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A new reduced phase derived from the excitonic insulator candidate Ta2NiSe5 has been synthesized via the intercalation of lithium. LiTa2NiSe5 crystallizes in the orthorhombic space group Pmnb (no. 62) with lattice parameters a = 3.50247(3) Å, b = 13.4053(4) Å, c = 15.7396(2) Å, and Z = 4, with an increase of the unit cell volume by 5.44(1)% compared with Ta2NiSe5. Significant rearrangement of the Ta-Ni-Se layers is observed, in particular a very significant relative displacement of the layers compared to the parent phase, similar to that which occurs under hydrostatic pressure. Neutron powder diffraction experiments and computational analysis confirm that Li occupies a distorted triangular prismatic site formed by Se atoms of adjacent Ta2NiSe5 layers with an average Li-Se bond length of 2.724(2) Å. Li-NMR experiments show a single Li environment at ambient temperature. Intercalation suppresses the distortion to monoclinic symmetry that occurs in Ta2NiSe5 at 328 K and that is believed to be driven by the formation of an excitonic insulating state. Magnetometry data show that the reduced phase has a smaller net diamagnetic susceptibility than Ta2NiSe5 due to the enhancement of the temperature-independent Pauli paramagnetism caused by the increased density of states at the Fermi level evident also from the calculations, consistent with the injection of electrons during intercalation and formation of a metallic phase.
Collapse
Affiliation(s)
- P A Hyde
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - J Cen
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
- Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, U.K
| | - S J Cassidy
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - N H Rees
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - P Holdship
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, U.K
| | - R I Smith
- Rutherford Appleton Laboratory, ISIS Facility, Harwell Campus, Didcot, Oxon OX11 0QX, U.K
| | - B Zhu
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
- Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, U.K
| | - D O Scanlon
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
- Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, U.K
| | - S J Clarke
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| |
Collapse
|
3
|
Zheng T, Yang M, Pan Y, Zheng Z, Sun Y, Li L, Huo N, Luo D, Gao W, Li J. Self-Powered Photodetector with High Efficiency and Polarization Sensitivity Enabled by WSe 2/Ta 2NiSe 5/WSe 2 van der Waals Dual Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294943 DOI: 10.1021/acsami.3c04147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-powered photodetectors have triggered widespread attention because of the requirement of Internet of Things (IoT) application and low power consumption. However, it is challenging to simultaneously implement miniaturization, high quantum efficiency, and multifunctionalization. Here, we report a high-efficiency and polarization-sensitive photodetector enabled by two-dimensional (2D) WSe2/Ta2NiSe5/WSe2 van der Waals (vdW) dual heterojunctions (DHJ) along with a sandwich-like electrode pair. On account of enhanced light collection efficiency and two opposite built-in electric fields at the hetero-interfaces, the DHJ device achieves not only a broadband spectral response of 400-1550 nm but outstanding performance under 635 nm light illumination including an ultrahigh external quantum efficiency (EQE) of 85.5%, a pronounced power conversion efficiency (PCE) of 1.9%, and a fast response speed of 420/640 μs, which is much better than that of the WSe2/Ta2NiSe5 single heterojunction (SHJ). Significantly, based on the strong in-plane anisotropy of 2D Ta2NiSe5 nanosheets, the DHJ device shows competitive polarization sensitivities of 13.9 and 14.8 under 635 and 808 nm light, respectively. Furthermore, an excellent self-powered visible imaging capability based on the DHJ device is demonstrated. These results pave a promising platform for realizing self-powered photodetectors with high performance and multifunctionality.
Collapse
Affiliation(s)
- Tao Zheng
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Yuan Pan
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Zhaoqiang Zheng
- College of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yiming Sun
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Nengjie Huo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Dongxiang Luo
- Huangpu Hydrogen Innovation Center/Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Jingbo Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| |
Collapse
|
4
|
Dong Z, Guo W, Zhang L, Zhang Y, Chen J, Huang L, Chen C, Yang L, Ren Z, Zhang J, Yu W, Li J, Wang L, Zhang K. Excitonic Insulator Enabled Ultrasensitive Terahertz Photodetection with Efficient Low-Energy Photon Harvesting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204580. [PMID: 36354190 PMCID: PMC9798984 DOI: 10.1002/advs.202204580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Indexed: 06/11/2023]
Abstract
Despite the interest toward the terahertz (THz) rapidly increasing, the high-efficient detection of THz photon is not widely available due to the low photoelectric conversion efficiency at this low-energy photon regime. Excitonic insulator (EI) states in emerging materials with anomalous optical transitions and renormalized valence band dispersions render their nontrivial photoresponse, which offers the prospect of harnessing the novel EI properties for the THz detection. Here, an EI-based photodetector is developed for efficient photoelectric conversion in the THz band. High-quality EI material Ta2 NiSe5 is synthesized and the existence of the EI state at room temperature is confirmed. The THz scanning near-field optical microscopy experimentally reveals the strong light-matter interaction in the THz band of EI state in the Ta2 NiSe5 . Benefiting from the strong light-matter interaction, the Ta2 NiSe5 -based photodetectors exhibit superior THz detection performances with a detection sensitivity of ≈42 pW Hz-1/2 and a response time of ≈1.1 µs at 0.1 THz at room temperature. This study provides a new avenue for realizing novel high-performance THz photodetectors by exploiting the emerging EI materials.
Collapse
Affiliation(s)
- Zhuo Dong
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123P. R. China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Wanlong Guo
- State Key Laboratory for Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐tian RoadShanghai200083P. R. China
| | - Libo Zhang
- State Key Laboratory for Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐tian RoadShanghai200083P. R. China
| | - Yan Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123P. R. China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Jie Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123P. R. China
| | - Luyi Huang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123P. R. China
| | - Cheng Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123P. R. China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Liu Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123P. R. China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Zeqian Ren
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123P. R. China
| | - Junrong Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123P. R. China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Wenzhi Yu
- Songshan Lake Materials LaboratoryDongguanGuangdong523000P. R. China
| | - Jie Li
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123P. R. China
| | - Lin Wang
- State Key Laboratory for Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐tian RoadShanghai200083P. R. China
| | - Kai Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123P. R. China
| |
Collapse
|
5
|
Qiao J, Feng F, Wang Z, Shen M, Zhang G, Yuan X, Somekh MG. Highly In-Plane Anisotropic Two-Dimensional Ternary Ta 2NiSe 5 for Polarization-Sensitive Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17948-17956. [PMID: 33834756 DOI: 10.1021/acsami.1c00268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intriguing anisotropic electrical and optoelectrical properties in two-dimensional (2D) materials are currently gaining increasing interest both for fundamental research and emerging optoelectronic devices. Identifying promising new 2D materials with low-symmetry structures will be rewarding in the development of polarization-integrated nanodevices. In this work, the anisotropic electron transport and optoelectrical properties of multilayer 2D ternary Ta2NiSe5 were systematically researched. The polarization-sensitive Ta2NiSe5 photodetector shows a linearly anisotropy ratio of ≈3.24 with 1064 nm illumination. The multilayer Ta2NiSe5-based field-effective transistors exhibit an excellent field-effective mobility of 161.25 cm2·V-1·s-1 along the a axis (armchair direction) as well as a great current saturation characteristic at room temperature. These results will promote a better understanding of the optoelectrical properties and applications in new categories of the in-plane anisotropic 2D materials.
Collapse
Affiliation(s)
- Jie Qiao
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Fu Feng
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ziming Wang
- State Key Laboratory of Crystal Materials & Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mengyan Shen
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Guoping Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
6
|
Su J, Liu G, Liu L, Chen J, Hu X, Li Y, Li H, Zhai T. Recent Advances in 2D Group VB Transition Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005411. [PMID: 33694286 DOI: 10.1002/smll.202005411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/25/2020] [Indexed: 06/12/2023]
Abstract
2D materials have received considerable research interest owing to their abundant material systems and remarkable properties. Among them, 2D group VB transition metal chalcogenides (GVTMCs) stand out as emerging 2D metallic materials and significantly broaden the research scope of 2D materials. 2D GVTMCs have great advantages in electrical transport, 2D magnetism, charge density wave, sensing, catalysis, and charge storage, making them attractive in the fields of functional devices and energy chemistry. In this review, the recent progress of 2D GVTMCs is summarized systematically from fundamental properties, growth methodologies to potential applications. The challenges and prospects are also discussed for future research in this field.
Collapse
Affiliation(s)
- Jianwei Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Guiheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jiazhen Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xiaozong Hu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
7
|
Kim K, Kim H, Kim J, Kwon C, Kim JS, Kim BJ. Direct observation of excitonic instability in Ta 2NiSe 5. Nat Commun 2021; 12:1969. [PMID: 33785740 PMCID: PMC8010035 DOI: 10.1038/s41467-021-22133-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Coulomb attraction between electrons and holes in a narrow-gap semiconductor or a semimetal is predicted to lead to an elusive phase of matter dubbed excitonic insulator. However, direct observation of such electronic instability remains extremely rare. Here, we report the observation of incipient divergence in the static excitonic susceptibility of the candidate material Ta2NiSe5 using Raman spectroscopy. Critical fluctuations of the excitonic order parameter give rise to quasi-elastic scattering of B2g symmetry, whose intensity grows inversely with temperature toward the Weiss temperature of TW ≈ 237 K, which is arrested by a structural phase transition driven by an acoustic phonon of the same symmetry at TC = 325 K. Concurrently, a B2g optical phonon becomes heavily damped to the extent that its trace is almost invisible around TC, which manifests a strong electron-phonon coupling that has obscured the identification of the low-temperature phase as an excitonic insulator for more than a decade. Our results unambiguously reveal the electronic origin of the phase transition.
Collapse
Affiliation(s)
- Kwangrae Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea
| | - Hoon Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea
| | - Jonghwan Kim
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Changil Kwon
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea
| | - Jun Sung Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea
| | - B J Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea.
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea.
| |
Collapse
|
8
|
Wu J, Zhang S, Mei X, Liu N, Hu T, Liang R, Yan D, Wei M. Ultrathin Transition Metal Chalcogenide Nanosheets Synthesized via Topotactic Transformation for Effective Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48310-48320. [PMID: 33048540 DOI: 10.1021/acsami.0c13364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultrathin transition metal chalcogenide (TMC) nanosheets with ultrahigh photothermal conversion efficiency (η) and excellent stability are strongly desired in the application of photothermal therapy (PTT). However, the current synthetic methods of ultrathin TMC nanosheets have issues in obtaining uniform morphology, good dispersion, and satisfactory PTT behavior. Herein, ultrathin nanosheets of CoFe-selenide (CFS) with a finely controlled structure were prepared via a topological structural transformation process from an ultrathin CoFe-layered double hydroxide (LDH) precursor, followed by surface modification with poly(ethylene glycol) (PEG). The as-prepared CFS-PEG nanosheets inherit the ultrathin morphology of CoFe-LDH and exhibit an outstanding photothermal performance with a η of 74.5%, which is the first rank level of reported two-dimensional (2D) TMC nanosheet materials. The CFS-PEG nanosheets possess a satisfactory photoacoustic (PA) imaging capability with an ultralow detection limit (5 ppm) and simultaneously superior T2 magnetic resonance imaging (MRI) performance with a large transverse MR relaxivity value (r2) of 347.7 mM-1 s-1. Moreover, in vitro and in vivo assays verify superior anticancer activity with a dramatic photoinduced cancer cell apoptosis and tumor ablation. Therefore, a successful paradigm is provided for rational design and preparation of ultrathin TMC nanosheets in this work, holding enormous potential in cancer theranostics.
Collapse
Affiliation(s)
- Jingjing Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shaomin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xuan Mei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ning Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dan Yan
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
9
|
Lan C, Shi Z, Cao R, Li C, Zhang H. 2D materials beyond graphene toward Si integrated infrared optoelectronic devices. NANOSCALE 2020; 12:11784-11807. [PMID: 32462161 DOI: 10.1039/d0nr02574g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Since the discovery of graphene in 2004, it has become a worldwide hot topic due to its fascinating properties. However, the zero band gap and weak light absorption of graphene strictly restrict its applications in optoelectronic devices. In this regard, semiconducting two-dimensional (2D) materials are thought to be promising candidates for next-generation optoelectronic devices. Infrared (IR) light has gained intensive attention due to its vast applications, including night vision, remote sensing, target acquisition, optical communication, etc. Consequently, the generation, modulation, and detection of IR light are crucial for practical applications. Due to the van der Waals interaction between 2D materials and Si, the lattice mismatch of 2D materials and Si can be neglected; consequently, the integration process can be achieved easily. Herein, we review the recent progress of semiconducting 2D materials in IR optoelectronic devices. Firstly, we introduce the background and motivation of the review. Then, the suitable materials for IR applications are presented, followed by a comprehensive review of the applications of 2D materials in light emitting devices, optical modulators, and photodetectors. Finally, the problems encountered and further developments are summarized. We believe that milestone investigations of IR optoelectronics based on 2D materials beyond graphene will emerge soon, which will bring about great industrial revelations in 2D material-based integrated nanodevice commercialization.
Collapse
Affiliation(s)
- Changyong Lan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | | | | | | | | |
Collapse
|
10
|
Mazza G, Rösner M, Windgätter L, Latini S, Hübener H, Millis AJ, Rubio A, Georges A. Nature of Symmetry Breaking at the Excitonic Insulator Transition: Ta_{2}NiSe_{5}. PHYSICAL REVIEW LETTERS 2020; 124:197601. [PMID: 32469559 DOI: 10.1103/physrevlett.124.197601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Ta_{2}NiSe_{5} is one of the most promising materials for hosting an excitonic insulator ground state. While a number of experimental observations have been interpreted in this way, the precise nature of the symmetry breaking occurring in Ta_{2}NiSe_{5}, the electronic order parameter, and a realistic microscopic description of the transition mechanism are, however, missing. By a symmetry analysis based on first-principles calculations, we uncover the discrete lattice symmetries which are broken at the transition. We identify a purely electronic order parameter of excitonic nature that breaks these discrete crystal symmetries and contributes to the experimentally observed lattice distortion from an orthorombic to a monoclinic phase. Our results provide a theoretical framework to understand and analyze the excitonic transition in Ta_{2}NiSe_{5} and settle the fundamental questions about symmetry breaking governing the spontaneous formation of excitonic insulating phases in solid-state materials.
Collapse
Affiliation(s)
- Giacomo Mazza
- Department of Quantum Matter Physics, University of Geneva, Quai Ernest-Ansermet 24, 1211 Geneva, Switzerland
- CPHT, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Malte Rösner
- Radboud University, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Lukas Windgätter
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Simone Latini
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hannes Hübener
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrew J Millis
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
- Nano-Bio Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco, 20018 San Sebastian, Spain
| | - Antoine Georges
- Department of Quantum Matter Physics, University of Geneva, Quai Ernest-Ansermet 24, 1211 Geneva, Switzerland
- CPHT, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| |
Collapse
|
11
|
Gong C, Chu J, Qian S, Yin C, Hu X, Wang H, Wang Y, Ding X, Jiang S, Li A, Gong Y, Wang X, Li C, Zhai T, Xiong J. Large-Scale Ultrathin 2D Wide-Bandgap BiOBr Nanoflakes for Gate-Controlled Deep-Ultraviolet Phototransistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908242. [PMID: 32077189 DOI: 10.1002/adma.201908242] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Ternary two-dimensional (2D) semiconductors with controllable wide bandgap, high ultraviolet (UV) absorption coefficient, and critical tuning freedom degree of stoichiometry variation have a great application prospect for UV detection. However, as-reported ternary 2D semiconductors often possess a bandgap below 3.0 eV, which must be further enlarged to achieve comprehensively improved UV, especially deep-UV (DUV), detection capacity. Herein, sub-one-unit-cell 2D monolayer BiOBr nanoflakes (≈0.57 nm) with a large size of 70 µm are synthesized for high-performance DUV detection due to the large bandgap of 3.69 eV. Phototransistors based on the 2D ultrathin BiOBr nanoflakes deliver remarkable DUV detection performance including ultrahigh photoresponsivity (Rλ , 12739.13 A W-1 ), ultrahigh external quantum efficiency (EQE, 6.46 × 106 %), and excellent detectivity (D*, 8.37 × 1012 Jones) at 245 nm with a gate voltage (Vg ) of 35 V attributed to the photogating effects. The ultrafast response (τrise = 102 µs) can be achieved by utilizing photoconduction effects at Vg of -40 V. The combination of photocurrent generation mechanisms for BiOBr-based phototransistors controlled by Vg can pave a way for designing novel 2D optoelectronic materials to achieve optimal device performance.
Collapse
Affiliation(s)
- Chuanhui Gong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Junwei Chu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shifeng Qian
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chujun Yin
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaozong Hu
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiang Ding
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shangchi Jiang
- Technology Development Center, Metatest Optoelectronic CO. LTD, Nanjing, 210008, P. R. China
| | - Alei Li
- Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Youpin Gong
- Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Chaobo Li
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
12
|
Fukutani K, Stania R, Jung J, Schwier EF, Shimada K, Kwon CI, Kim JS, Yeom HW. Electrical Tuning of the Excitonic Insulator Ground State of Ta_{2}NiSe_{5}. PHYSICAL REVIEW LETTERS 2019; 123:206401. [PMID: 31809082 DOI: 10.1103/physrevlett.123.206401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate that the excitonic insulator ground state of Ta_{2}NiSe_{5} can be electrically controlled by electropositive surface adsorbates. Our studies utilizing angle-resolved photoemission spectroscopy reveal intriguing wave-vector-dependent deformations of the characteristic flattop valence band of this material upon potassium adsorption. The observed band deformation indicates a reduction of the single-particle band gap due to the Stark effect near the surface. The present study provides the foundation for the electrical tuning of the many-body quantum states in excitonic insulators.
Collapse
Affiliation(s)
- Keisuke Fukutani
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Roland Stania
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Jiwon Jung
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eike F Schwier
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenya Shimada
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Chang Il Kwon
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jun Sung Kim
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Han Woong Yeom
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
13
|
Yan J, Xiao R, Luo X, Lv H, Zhang R, Sun Y, Tong P, Lu W, Song W, Zhu X, Sun Y. Strong Electron-Phonon Coupling in the Excitonic Insulator Ta 2NiSe 5. Inorg Chem 2019; 58:9036-9042. [PMID: 31246443 DOI: 10.1021/acs.inorgchem.9b00432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An excitonic insulating (EI) state is a fantastic correlated electron phase in condensed matter physics, driven by screened electron-hole interaction. Ta2NiSe5 is an excitonic insulator with a critical temperature (TC) of 328 K. In the current study, temperature-dependent Raman spectroscopy is used to investigate the phonon vibrations in Ta2NiSe5. The following observations were made: (1) an abnormal blue shift around TC is observed, which originates from the monoclinic to orthorhombic structural phase transition; (2) the splitting of a mode and two new Raman modes at 147 and 235 cm-1 have been observed with the formation of an EI state. With the help of first-principles calculations and temperature-dependent X-ray diffraction (XRD) experiments, it is found that the TaSe6 octahedra are "frozen" and the NiSe4 tetrahedra are greatly distorted below TC. Thus, it seems that the distortion of NiSe4 tetrahedra plays an important role in the strong electron-phonon coupling (EPC) in Ta2NiSe5, while the strong EPC, coupled with electron-hole interaction, opens the energy gap to form the EI state in Ta2NiSe5.
Collapse
Affiliation(s)
- Jian Yan
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , People's Republic of China.,University of Science and Technology of China , Hefei 230026 , People's Republic of China
| | - Ruichun Xiao
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , People's Republic of China.,University of Science and Technology of China , Hefei 230026 , People's Republic of China
| | - Xuan Luo
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Hongyan Lv
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Ranran Zhang
- High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Yan Sun
- Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , People's Republic of China
| | - Peng Tong
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Wenjian Lu
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Wenhai Song
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Yuping Sun
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , People's Republic of China.,High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei 230031 , People's Republic of China.,Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , People's Republic of China
| |
Collapse
|
14
|
Mazza G, Georges A. Superradiant Quantum Materials. PHYSICAL REVIEW LETTERS 2019; 122:017401. [PMID: 31012726 DOI: 10.1103/physrevlett.122.017401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/16/2018] [Indexed: 05/20/2023]
Abstract
There is currently great interest in the strong coupling between the quantized photon field of a cavity and electronic or other degrees of freedom in materials. A major goal is the creation of novel collective states entangling photons with those degrees of freedom. Here we show that the cooperative effect between strong electron correlations in quantum materials and the long-range interactions induced by the photon field leads to the stabilization of coherent phases of light and matter. By studying a two-band model of interacting electrons coupled to a cavity field, we show that a phase characterized by the simultaneous condensation of excitons and photon superradiance can be realized, hence stabilizing and intertwining two collective phenomena which are rather elusive in the absence of this cooperative effect.
Collapse
Affiliation(s)
- Giacomo Mazza
- CPHT, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Antoine Georges
- CPHT, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth avenue, New York, New York 10010, USA
- DQMP, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève, Suisse
| |
Collapse
|
15
|
Photo-induced semimetallic states realised in electron-hole coupled insulators. Nat Commun 2018; 9:4322. [PMID: 30333495 PMCID: PMC6192982 DOI: 10.1038/s41467-018-06801-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/14/2018] [Indexed: 11/08/2022] Open
Abstract
Using light to manipulate materials into desired states is one of the goals in condensed matter physics, since light control can provide ultrafast and environmentally friendly photonics devices. However, it is generally difficult to realise a photo-induced phase which is not merely a higher entropy phase corresponding to a high-temperature phase at equilibrium. Here, we report realisation of photo-induced insulator-to-metal transitions in Ta2Ni(Se1-xSx)5 including the excitonic insulator phase using time- and angle-resolved photoemission spectroscopy. From the dynamic properties of the system, we determine that screening of excitonic correlations plays a key role in the timescale of the transition to the metallic phase, which supports the existence of an excitonic insulator phase at equilibrium. The non-equilibrium metallic state observed unexpectedly in the direct-gap excitonic insulator opens up a new avenue to optical band engineering in electron-hole coupled systems.
Collapse
|
16
|
Seo YS, Eom MJ, Kim JS, Kang CJ, Min BI, Hwang J. Temperature-dependent excitonic superuid plasma frequency evolution in an excitonic insulator, Ta 2NiSe 5. Sci Rep 2018; 8:11961. [PMID: 30097665 PMCID: PMC6086873 DOI: 10.1038/s41598-018-30430-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/02/2018] [Indexed: 11/08/2022] Open
Abstract
An interesting van der Waals material, Ta2NiSe5 has been known one of strong excitonic insulator candidates since it has very small or zero bandgap and can have a strong exciton binding energy because of its quasi-one-dimensional crystal structure. Here we investigate a single crystal Ta2NiSe5 using optical spectroscopy. Ta2NiSe5 has quasi-one-dimensional chains along the a-axis. We have obtained anisotropic optical properties of a single crystal Ta2NiSe5 along the a- and c-axes. The measured a- and c-axis optical conductivities exhibit large anisotropic electronic and phononic properties. With regard to the a-axis optical conductivity, a sharp peak near 3050 cm-1 at 9 K, with a well-defined optical gap ([Formula: see text] 1800 cm-1) and a strong temperature-dependence, is observed. With an increase in temperature, this peak broadens and the optical energy gap closes around ∼325 K ([Formula: see text]). The spectral weight redistribution with respect to the frequency and temperature indicates that the normalized optical energy gap ([Formula: see text]) is [Formula: see text]. The temperature-dependent superfluid plasma frequency of the excitonic condensation in Ta2NiSe5 has been determined from measured optical data. Our study may pave new avenues in the future research on excitonic insulators.
Collapse
Affiliation(s)
- Yu-Seong Seo
- Department of Physics, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Man Jin Eom
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jun Sung Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Chang-Jong Kang
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Byung Il Min
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jungseek Hwang
- Department of Physics, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
17
|
Sugimoto K, Nishimoto S, Kaneko T, Ohta Y. Strong Coupling Nature of the Excitonic Insulator State in Ta_{2}NiSe_{5}. PHYSICAL REVIEW LETTERS 2018; 120:247602. [PMID: 29956960 DOI: 10.1103/physrevlett.120.247602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 04/29/2018] [Indexed: 06/08/2023]
Abstract
We analyze the measured optical conductivity spectra using the density-functional-theory-based electronic structure calculation and density-matrix renormalization group calculation of an effective model. We show that, in contrast to a conventional description, the Bose-Einstein condensation of preformed excitons occurs in Ta_{2}NiSe_{5}, despite the fact that a noninteracting band structure is a band-overlap semimetal rather than a small band-gap semiconductor. The system above the transition temperature is therefore not a semimetal but rather a state of preformed excitons with a finite band gap. A novel insulator state caused by the strong electron-hole attraction is thus established in a real material.
Collapse
Affiliation(s)
- Koudai Sugimoto
- Center for Frontier Science, Chiba University, Chiba 263-8522, Japan
| | - Satoshi Nishimoto
- Department of Physics, Technical University Dresden, 01069 Dresden, Germany
- Institute for Theoretical Solid State Physics, IFW Dresden, 01171 Dresden, Germany
| | - Tatsuya Kaneko
- Computational Condensed Matter Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yukinori Ohta
- Department of Physics, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
18
|
Prolonged photo-carriers generated in a massive-and-anisotropic Dirac material. Sci Rep 2018; 8:9073. [PMID: 29899419 PMCID: PMC5998121 DOI: 10.1038/s41598-018-27133-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022] Open
Abstract
Transient electron-hole pairs generated in semiconductors can exhibit unconventional excitonic condensation. Anisotropy in the carrier mass is considered as the key to elongate the life time of the pairs, and hence to stabilize the condensation. Here we employ time- and angle-resolved photoemission spectroscopy to explore the dynamics of photo-generated carriers in black phosphorus. The electronic structure above the Fermi level has been successfully observed, and a massive-and-anisotropic Dirac-type dispersions are confirmed; more importantly, we directly observe that the photo-carriers generated across the direct band gap have the life time exceeding 400 ps. Our finding confirms that black phosphorus is a suitable platform for excitonic condensations, and also open an avenue for future applications in broadband mid-infrared BP-based optoelectronic devices.
Collapse
|
19
|
Tan C, Lai Z, Zhang H. Ultrathin Two-Dimensional Multinary Layered Metal Chalcogenide Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28752578 DOI: 10.1002/adma.201701392] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/28/2017] [Indexed: 05/12/2023]
Abstract
Ultrathin two-dimensional (2D) layered transition metal dichalcogenides (TMDs), such as MoS2 , WS2 , TiS2 , TaS2 , ReS2 , MoSe2 and WSe2 , have attracted considerable attention over the past six years owing to their unique properties and great potential in a wide range of applications. Aiming to achieve tunable properties and optimal application performances, great effort is devoted to the exploration of 2D multinary layered metal chalcogenide nanomaterials, which include ternary metal chalcogenides with well-defined crystal structures, alloyed TMDs, heteroatom-doped TMDs and 2D metal chalcogenide heteronanostructures. These novel 2D multinary layered metal chalcogenide nanomaterials exhibit some unique properties compared to 2D binary TMD counterparts, thus holding great promise in various potential applications including electronics/optoelectronics, catalysis, sensors, biomedicine, and energy storage and conversion with enhanced performances. This article focuses on the state-of-art progress on the preparation, characterization and applications of ultrathin 2D multinary layered metal chalcogenide nanomaterials.
Collapse
Affiliation(s)
- Chaoliang Tan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuangchai Lai
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|