1
|
Chae K, Mohamad NARC, Kim J, Won DI, Lin Z, Kim J, Kim DH. The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem Soc Rev 2024; 53:9029-9058. [PMID: 39158537 DOI: 10.1039/d3cs00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration. Furthermore, this review highlights the transformative potential of the CISS effect in addressing the key challenges of the NRR and CO2RR processes and in mitigating singlet oxygen formation in metal-air batteries, thereby improving their performance and durability. Through this comprehensive overview, we aim to underscore the significant role of incorporating chirality and spin polarization in advancing electrocatalytic technologies for sustainable energy applications.
Collapse
Affiliation(s)
- Kyunghee Chae
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Nur Aqlili Riana Che Mohamad
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeonghyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Zhiqun Lin
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
2
|
Tan L, Fu W, Gao Q, Wang PP. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309033. [PMID: 37944554 DOI: 10.1002/adma.202309033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Morozova SM, Gevorkian A, Kumacheva E. Design, characterization and applications of nanocolloidal hydrogels. Chem Soc Rev 2023. [PMID: 37464914 DOI: 10.1039/d3cs00387f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Nanocolloidal gels (NCGs) are an emerging class of soft matter, in which nanoparticles act as building blocks of the colloidal network. Chemical or physical crosslinking enables NCG synthesis and assembly from a broad range of nanoparticles, polymers, and low-molecular weight molecules. The synergistic properties of NCGs are governed by nanoparticle composition, dimensions and shape, the mechanism of nanoparticle bonding, and the NCG architecture, as well as the nature of molecular crosslinkers. Nanocolloidal gels find applications in soft robotics, bioengineering, optically active coatings and sensors, optoelectronic devices, and absorbents. This review summarizes currently scattered aspects of NCG formation, properties, characterization, and applications. We describe the diversity of NCG building blocks, discuss the mechanisms of NCG formation, review characterization techniques, outline NCG fabrication and processing methods, and highlight most common NCG applications. The review is concluded with the discussion of perspectives in the design and development of NCGs.
Collapse
Affiliation(s)
- Sofia M Morozova
- N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, 105005, Moscow, Russia
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
| | - Albert Gevorkian
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
- Department of Chemical Engineering and Applied Chemistry University of Toronto, 200 College street, Toronto, Ontario M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
4
|
Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G. Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications. ACS NANO 2022; 16:19789-19809. [PMID: 36454684 DOI: 10.1021/acsnano.2c08145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.
Collapse
Affiliation(s)
- Shenli Wang
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Xing Liu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Jie Chen
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Weiwei Fu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Yuan Zhang
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, P. R. China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
Li H, Gao X, Zhang C, Ji Y, Hu Z, Wu X. Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications. BIOSENSORS 2022; 12:957. [PMID: 36354466 PMCID: PMC9688444 DOI: 10.3390/bios12110957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 05/27/2023]
Abstract
As chiral antennas, plasmonic nanoparticles (NPs) can enhance chiral responses of chiral materials by forming hybrid structures and improving their own chirality preference as well. Chirality-dependent properties of plasmonic NPs broaden application potentials of chiral nanostructures in the biomedical field. Herein, we review the wet-chemical synthesis and self-assembly fabrication of gold-NP-based chiral nanostructures. Discrete chiral NPs are mainly obtained via the seed-mediated growth of achiral gold NPs under the guide of chiral molecules during growth. Irradiation with chiral light during growth is demonstrated to be a promising method for chirality control. Chiral assemblies are fabricated via the bottom-up assembly of achiral gold NPs using chiral linkers or guided by chiral templates, which exhibit large chiroplasmonic activities. In describing recent advances, emphasis is placed on the design and synthesis of chiral nanostructures with the tuning and amplification of plasmonic circular dichroism responses. In addition, the review discusses the most recent or even emerging trends in biomedical fields from biosensing and imaging to disease diagnosis and therapy.
Collapse
Affiliation(s)
- Hanbo Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinshuang Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhijian Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kowalska N, Bandalewicz F, Kowalski J, Gómez-Graña S, Bagiński M, Pastoriza-Santos I, Grzelczak M, Matraszek J, Pérez-Juste J, Lewandowski W. Hydrophobic Gold Nanoparticles with Intrinsic Chirality for the Efficient Fabrication of Chiral Plasmonic Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50013-50023. [PMID: 36305423 PMCID: PMC9650650 DOI: 10.1021/acsami.2c11925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 05/27/2023]
Abstract
The development of plasmonic nanomaterials with chiral geometry has drawn extensive attention owing to their practical implications in chiral catalysis, chiral metamaterials, or enantioselective biosensing and medicine. However, due to the lack of effective synthesis methods of hydrophobic nanoparticles (NPs) showing intrinsic, plasmonic chirality, their applications are currently limited to aqueous systems. In this work, we resolve the problem of achieving hydrophobic Au NPs with intrinsic chirality by efficient phase transfer of water-soluble NPs using low molecular weight, liquid crystal-like ligands. We confirmed that, after the phase transfer, Au NPs preserve strong, far-field circular dichroism (CD) signals, attesting their chiral geometry. The universality of the method is exemplified by using different types of NPs and ligands. We further highlight the potential of the proposed approach to realize chiral plasmonic, inorganic/organic nanocomposites with block copolymers, liquid crystals, and compounds forming physical gels. All soft matter composites sustain plasmonic CD signals with electron microscopies confirming well-dispersed nanoinclusions. The developed methodology allows us to expand the portfolio of plasmonic NPs with intrinsic structural chirality, thereby broadening the scope of their applications toward soft-matter based systems.
Collapse
Affiliation(s)
- Natalia Kowalska
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Filip Bandalewicz
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Jakub Kowalski
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Sergio Gómez-Graña
- Departamento
de Química Física, CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Instituto
de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Maciej Bagiński
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Isabel Pastoriza-Santos
- Departamento
de Química Física, CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Instituto
de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Marek Grzelczak
- Centro
de Física de Materiales (CSIC-UPV/EHU) and Donostia International
Physics Center, 20018 Donostia − San Sebastián, Spain
| | - Joanna Matraszek
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Jorge Pérez-Juste
- Departamento
de Química Física, CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Instituto
de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Wiktor Lewandowski
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| |
Collapse
|
7
|
Li H, Kou L, Liang L, Li B, Zhao W, Yang XJ, Wu B. Anion-coordination-driven single-double helix switching and chiroptical molecular switching based on oligoureas. Chem Sci 2022; 13:4915-4921. [PMID: 35655878 PMCID: PMC9067589 DOI: 10.1039/d2sc00876a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022] Open
Abstract
Synthetic foldamers with helical conformation are widely seen, but controllable interconversion amongst different geometries (helical structure and sense) is challenging. Here, a family of oligourea (tetra-, penta-, and hexa-) ligands bearing stereocenters at both ends are designed and shown to switch between single and double helices with concomitant inversion of helical senses upon anion coordination. The tetraurea ligand forms a right-handed single helix upon chloride anion (Cl-) binding and is converted into a left-handed double helix when phosphate anion (PO4 3-) is coordinated. The helical senses of the single and double helices are opposite, and the conversion is further found to be dependent on the stoichiometry of the ligand and phosphate anion. In contrast, only a single helix is formed for the hexaurea ligand with the phosphate anion. This distinction is attributed to the fact that the characteristic phosphate anion coordination geometry is satisfied by six urea moieties with twelve H-bonds. Our study revealed unusual single-double helix interconversion accompanied by unexpected chiroptical switching of helical senses.
Collapse
Affiliation(s)
- Hongfei Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Lei Kou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Lin Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Boyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Wei Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Xiao-Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| |
Collapse
|
8
|
Jiang S, Song Y, Kang H, Li B, Yang K, Xing G, Yu Y, Li S, Zhao P, Zhang T. Ligand Exchange Strategy to Achieve Chiral Perovskite Nanocrystals with a High Photoluminescence Quantum Yield and Regulation of the Chiroptical Property. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3385-3394. [PMID: 34932328 DOI: 10.1021/acsami.1c18978] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral nanomaterials have drawn extensive attention on account of numerous application prospects in optoelectronics, asymmetric catalysis, chiral recognition, and three-dimensional (3D) display. Thereinto, chiral perovskite has been a hotspot due to brilliant optoelectronic properties, but some problems limit the development, including low quantum yield, low chiral intensity, and the lack of facile regulation. To overcome these issues, an effective ligand exchange strategy, i.e. the interface modification has been proposed for chiral perovskite nanocrystals (PNCs). With the surface modification of CsPbBr3 PNCs with chiral organic ammonium in methyl acetate in the typical purification process, excellent circular dichroism (CD) signals were obtained and defects were eliminated, leading to an increase in the photoluminescence quantum yield (PLQY) from 50% to nearly 100%. The CD signal can be regulated through a ligand exchange strategy in the longitudinal dimension, the chiral intensity, and the transverse dimension, the wavelength range. Here, the proper addition of R-α-PEAI into the R-α-PEABr-capped CsPbBr3 PNCs can produce a superstrong CD signal with the highest anisotropy factor (g-factor) of 0.0026 in the visible region among reported chiral colloidal PNCs. Simultaneously, the luminescence emission can be tuned from the green to red region with boosted PLQY through the approach. The density functional theory (DFT) calculation result supports that chirality comes from the hybridization between the energy level of a perovskite structure and that of chiral organic molecules. These properties can be used in the structural engineering of high-performance chiral optical materials, spin-polarized light-emitting devices, and polarized optoelectronic devices.
Collapse
Affiliation(s)
- Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Yuxin Song
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Huimin Kang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Kunlong Yang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Guoxiang Xing
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Ying Yu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Siyi Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Peisheng Zhao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
9
|
Qu DH, Xu H, Zhang Q, Gan JA, Wang Z, Chen M, Shan Y, Chen S, Tong F. Hysteresis Nanoarchitectonics with Chiral Gel Fibers and Achiral Gold Nanospheres for Reversible Chiral Inversion. Chem Asian J 2022; 17:e202101354. [PMID: 35007397 DOI: 10.1002/asia.202101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Indexed: 11/07/2022]
Abstract
Intelligent control over the handedness of circular dichroism (CD) is of special significance in self-organized biological and artificial systems. Herein, we report a chiral organic molecule (R1) containing a disulfide unit self-assembles into M-type helical fibers gels, which undergoes chirality inversion by incorporating gold nanospheres due to the formation of Au-S bonds between R1 and gold nanospheres. Upon heating at 80oC, the aggregation of gold nanospheres results in a disappearance of the Au-S bond, allowing the reversible switching back to M-type helical fibers. The original chirality of M-type fibers could also be retained by adding anisotropic gold nanorods. A series of characterization methods, involving CD, Raman, Infrared spectroscopy, electric microscopy, and small-angle X-ray scattering (SAXS) measurements were used to investigate the mechanism of chiral evolutions. Our results provide a facile way of fabricating hysteresis nanoarchitectonics to achieve dynamic supramolecular chirality using inorganic metallic nanoparticles.
Collapse
Affiliation(s)
- Da-Hui Qu
- Key Labs for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, CHINA
| | - Hui Xu
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Qi Zhang
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Jia-An Gan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Zhuo Wang
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Meng Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Yahan Shan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Shaoyu Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Fei Tong
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, 200237, Shanghai, CHINA
| |
Collapse
|
10
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
11
|
Song M, Tong L, Liu S, Zhang Y, Dong J, Ji Y, Guo Y, Wu X, Zhang X, Wang RY. Nonlinear Amplification of Chirality in Self-Assembled Plasmonic Nanostructures. ACS NANO 2021; 15:5715-5724. [PMID: 33661616 DOI: 10.1021/acsnano.1c01158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular chirality transfer and amplification is at the heart of the fundamental understanding of chiral origin and fabrication of artificial chiral materials. We investigate here the nonlinear amplification effect in the chiral transfer from small molecules to assembled plasmonic nanoparticles. Our results show clearly a recognizable nonlinear behavior of the electronic and plasmonic circular dichroism activities, demonstrating the validity of the "majority-rules" principle operating in both the three-dimensional interface-confined molecularly chiral environment and the assembled plasmonic nanoparticles. Such twin "majority-rules" effects from the self-assembled organic-inorganic nanocomposite system have not been reported previously. By establishing a direct correlation between the dynamic template of the molecularly chiral environment and the nonlinear chiral amplification in the nanoparticle assemblies, this study may provide an insightful understanding of the hierarchical and cooperative chiral information transfer from molecular levels to nanoscales.
Collapse
Affiliation(s)
- Mei Song
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shengli Liu
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yaowen Zhang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Junyu Dong
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yao Guo
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiangdong Zhang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Rong-Yao Wang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Zhang M, Ma Y, Wang H, Wang B, Zhou Y, Liu Y, Shao M, Huang H, Lu F, Kang Z. Chiral Control of Carbon Dots via Surface Modification for Tuning the Enzymatic Activity of Glucose Oxidase. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5877-5886. [PMID: 33482691 DOI: 10.1021/acsami.0c21949] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Chiral carbon dots (CDs) integrated the advantages of achiral CDs and the unique chiral property, which expand the prospect of the biological applications of CDs. However, the structure control and the origin of chirality for chiral CDs remain unclear. Herein, chiral CDs were obtained by thermal polymerization of chiral amino acids and citric acid, and their handedness of chirality could be controlled by adjusting the reaction temperature, which leads to different kinds of surface modifications. With aliphatic amino acids as a chiral source, all of the CDs that reacted at different temperatures (90-200 °C) have the same handedness of the chiral source. But with aromatic amino acids as a chiral source, CDs with maintained or inversed handedness compared with the chiral source could be obtained by adjusting the reaction temperature. Below a temperature of 120 °C, the chiral source was modified with CDs by esterification and transferred the handedness of chirality; at high temperatures (above 150 °C), which mainly connected by amidation accompanying with the formation of rigid structure generated by the π conjugation between the aromatic nucleus of chiral source and the carbon core of CDs, caused the inversing of the chiral signal. Further, we investigated the chiral effects of CDs on the glucose oxidase activity for a highly sensitive electrochemical biosensor.
Collapse
Affiliation(s)
- Mengling Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yurong Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Huibo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Bo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yunjie Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
- Macau Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
13
|
Szustakiewicz P, Kowalska N, Grzelak D, Narushima T, Góra M, Bagiński M, Pociecha D, Okamoto H, Liz-Marzán LM, Lewandowski W. Supramolecular Chirality Synchronization in Thin Films of Plasmonic Nanocomposites. ACS NANO 2020; 14:12918-12928. [PMID: 32886482 PMCID: PMC7596782 DOI: 10.1021/acsnano.0c03964] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mirror symmetry breaking in materials is a fascinating phenomenon that has practical implications for various optoelectronic technologies. Chiral plasmonic materials are particularly appealing due to their strong and specific interactions with light. In this work we broaden the portfolio of available strategies toward the preparation of chiral plasmonic assemblies, by applying the principles of chirality synchronization-a phenomenon known for small molecules, which results in the formation of chiral domains from transiently chiral molecules. We report the controlled cocrystallization of 23 nm gold nanoparticles and liquid crystal molecules yielding domains made of highly ordered, helical nanofibers, preferentially twisted to the right or to the left within each domain. We confirmed that such micrometer sized domains exhibit strong, far-field circular dichroism (CD) signals, even though the bulk material is racemic. We further highlight the potential of the proposed approach to realize chiral plasmonic thin films by using a mechanical chirality discrimination method. Toward this end, we developed a rapid CD imaging technique based on the use of polarized light optical microscopy (POM), which enabled probing the CD signal with micrometer-scale resolution, despite of linear dichroism and birefringence in the sample. The developed methodology allows us to extend intrinsically local effects of chiral synchronization to the macroscopic scale, thereby broadening the available tools for chirality manipulation in chiral plasmonic systems.
Collapse
Affiliation(s)
- Piotr Szustakiewicz
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Natalia Kowalska
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Dorota Grzelak
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Tetsuya Narushima
- Institute
for Molecular Science (IMS) and The Graduate University for Advanced
Studies (SOKENDAI), 38
Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Monika Góra
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Maciej Bagiński
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Damian Pociecha
- Faculty
of Chemistry, University of Warsaw, 101 Żwirki i Wigury, 02-089 Warsaw, Poland
| | - Hiromi Okamoto
- Institute
for Molecular Science (IMS) and The Graduate University for Advanced
Studies (SOKENDAI), 38
Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Paseo
de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
- Centro
de Investigación en Biomédica Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Wiktor Lewandowski
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
- (W.L.)
| |
Collapse
|
14
|
Falcone N, Shao T, Andoy NMO, Rashid R, Sullan RMA, Sun X, Kraatz HB. Multi-component peptide hydrogels - a systematic study incorporating biomolecules for the exploration of diverse, tuneable biomaterials. Biomater Sci 2020; 8:5601-5614. [PMID: 32832942 DOI: 10.1039/d0bm01104e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptide-based supramolecular gels can be designed to be functional "smart" materials that have applications in drug delivery, tissue engineering, and supramolecular chemistry. Although many multi-component gel systems have been designed and reported, many of these applications still rely solely on single-component gel systems which limits the functionalities of the materials. Multi-component self-assembly leads to the formation of highly ordered and complex architectures while offering the possibility to generate hydrogels with interesting properties including functional complexity and diverse morphologies. Being able to incorporate various classes of biomolecules can allow for tailoring the materials' functionalities to specific application needs. Here, a novel peptide amphiphile, myristyl-Phe-Phe (C14-FF), was synthesized and explored for hydrogel formation. The hydrogel possesses a nanofiber matrix morphology, composed of β-sheet aggregates, a record-low gelation concentration for this class of compounds, and a unique solvent-dependent helical switch. The C14-FF hydrogel was then explored with various classes of biomolecules (carbohydrates, vitamins, proteins, building blocks of HA) to generate a multi-component library of gels that have potential to represent the complex natural extracellular matrix. Selected multi-component gels exhibit an excellent compatibility with mesenchymal stem cells showing high cell viability percentages, which holds great promise for applications in regenerative therapy.
Collapse
Affiliation(s)
- Natashya Falcone
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada.
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang S, Zhang Y, Qin X, Zhang L, Zhang Z, Lu W, Liu M. Guanosine Assembly Enabled Gold Nanorods with Dual Thermo- and Photoswitchable Plasmonic Chiroptical Activity. ACS NANO 2020; 14:6087-6096. [PMID: 32374982 DOI: 10.1021/acsnano.0c01819] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Noble metal nanostructures with plasmonic circular dichroism (PCD) have attracted interest, and a modulation of PCD is of great importance for their potential applications. Herein, we propose a supramolecular strategy for achieving dual thermal and photoswitchable PCD. When guanosine (G), deoxyguanosine (dG), and boric acid modified achiral gold nanorods (GNRs) were coassembled into a hydrogel, hybrid nanofibers with PCD were produced. When the hydrogel was heated, the nanofiber was disassembled and the PCD disappeared. As the hydrogel was thermally reversible, a thermo-controlled PCD could be realized. The hybrid hydrogel also showed photoswitchable PCD. When the gel was irradiated with an IR laser, the PCD disappeared. It can be restored by being placed at room temperature. Moreover, the hybrid gel was selectively responsive to the circularly polarized light (CPL). For (G/dG)-GNR hybrid assemblies, the R-CPL irradiation showed photothermal efficiency higher than that of L-CPL, which made it useful for an IR-irradiation-controlled release of drug molecules.
Collapse
Affiliation(s)
- Song Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuening Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xujin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Zhao X, Zang SQ, Chen X. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem Soc Rev 2020; 49:2481-2503. [DOI: 10.1039/d0cs00093k] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chirality is ubiquitous in nature and plays mysterious and essential roles in maintaining key biological and physiological processes.
Collapse
Affiliation(s)
- Xueli Zhao
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
17
|
Abstract
Recent progress in chiroptical switches including on/off, amplification, and inversion of the chiral signals such as ECD and CPL in supramolecular assemblies is shown.
Collapse
Affiliation(s)
- Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Han-Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Shuai Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
18
|
Bagiński M, Tupikowska M, González-Rubio G, Wójcik M, Lewandowski W. Shaping Liquid Crystals with Gold Nanoparticles: Helical Assemblies with Tunable and Hierarchical Structures Via Thin-Film Cooperative Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904581. [PMID: 31729083 DOI: 10.1002/adma.201904581] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Indexed: 05/21/2023]
Abstract
The availability of helical assemblies of plasmonic nanoparticles with precisely controlled and tunable structures can play a key role in the future development of chiral plasmonics and metamaterials. Here, a strategy to efficiently yield helical structures based on the cooperative interactions of liquid crystals and gold nanoparticles in thin films is developed. These nanocomposites exhibit exceptional long-range hierarchical order across length scales, which results from the growth mechanism of nanoparticle-coated twisted nanoribbons and their ability to form organized bundles. The helical assembly formation is governed by the presence of rationally functionalized nanoparticles. Importantly, the thickness of the achieved nanocomposites can be reversibly reconfigured owing to the polymorphic nature of the liquid crystal. The versatility of the proposed approach is demonstrated by preparing helices assembled from nanoparticles of different geometries and dimensions (spherical and rod-like). The described strategy may become an enabling technology for structuring nanoparticle assemblies with high precision and fabricating optically active materials.
Collapse
Affiliation(s)
- Maciej Bagiński
- Laboratory of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093, Warsaw, Poland
| | - Martyna Tupikowska
- Laboratory of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093, Warsaw, Poland
| | - Guillermo González-Rubio
- BioNanoPlasmonic Laboratory, CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, 20014, Spain
| | - Michał Wójcik
- Laboratory of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093, Warsaw, Poland
| | - Wiktor Lewandowski
- Laboratory of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093, Warsaw, Poland
| |
Collapse
|
19
|
Chen L, Zheng J, Feng J, Qian Q, Zhou Y. Reversible modulation of plasmonic chiral signals of achiral gold nanorods using a chiral supramolecular template. Chem Commun (Camb) 2019; 55:11378-11381. [PMID: 31478536 DOI: 10.1039/c9cc06050b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report here the fabrication of a multiple stimuli-responsive chiral plasmonic system based on the reversible self-assembly of phenylboronic acid-capped gold nanorods (PBA-Au NRs) guided by a supramolecular glycopeptide mimetic template. The plasmonic chiral signals of PBA-Au NRs can be reversibly switched on and off by temperature, light, pH and glucose concentration variations.
Collapse
Affiliation(s)
- Limin Chen
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China. and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Jing Zheng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Jie Feng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Qiuping Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Yunlong Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China. and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| |
Collapse
|
20
|
Cheng G, Xu D, Lu Z, Liu K. Chiral Self-Assembly of Nanoparticles Induced by Polymers Synthesized via Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS NANO 2019; 13:1479-1489. [PMID: 30702861 DOI: 10.1021/acsnano.8b07151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chiral inorganic nanomaterials are of great interest because of their excellent optical properties. Most of the attention has been focused on the utilization of biomolecules or their derivatives as linkers or templates to control the chiral structure of assembled inorganic nanoparticles. Chiral polymers are promising synthetic materials that can be used to replace their biological counterparts. Here, by using poly(methacrylate hydroxyethyl-3-indole propionate) (PIPEMA) and poly(2-hydroxyethyl methacrylate) (PHEMA) synthesized via syndioselective reversible addition-fragmentation chain transfer polymerization, we successfully realized chiral self-assembly of gold nanorods with strong circular dichroism response in the vis-NIR region. Moreover, the intensity of the chiral signal of the assemblies can be regulated by the molecular weight of the polymers. Notably, although the monomers are achiral and no chiral reagents are involved in their synthesis, the main chains of PIPEMA and PHEMA exhibit a preferred-handed helical conformation, which is the origin of chirality of the nanorod assemblies. The preferred-handed helical conformation of polymers is attributed to their syndiotacticity and stabilized by the steric hindrance of the side groups. The addition of chiral carbon atoms at the side groups does not change the preferred-handedness of the polymer main chain, resulting in the assembled nanorod structures with the same chirality. This strategy provides inspiration for the rational design and synthesis of optically active functional synthetic polymers for the preparation of promising chiral nanomaterials.
Collapse
Affiliation(s)
- Guiqing Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , 130012 , People's Republic of China
| | - Duo Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun , 130023 , People's Republic of China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , 130012 , People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun , 130023 , People's Republic of China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , 130012 , People's Republic of China
| |
Collapse
|
21
|
Nakagawa M, Kawai T. Tuning Gel–Sol Transition Behavior of a Hydrogel Based on 12-Hydroxystearic Acid and a Long-Chain Amidoamine Derivative. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Makoto Nakagawa
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
22
|
Wang R, Cui J, Wan X, Zhang J. Controlled chiral arrangement of silver nanoparticles in supramolecular gels modulated by the cooling rate. Chem Commun (Camb) 2019; 55:4949-4952. [DOI: 10.1039/c9cc01015g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Opposite helical arrangements of silver nanoparticles can be in situ achieved in organogels from a single gelator at different cooling rates.
Collapse
Affiliation(s)
- Rong Wang
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jiaxi Cui
- INM-Leibniz Institute for New Materials
- Saarbrucken
- Germany
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
23
|
Jiang H, Fan H, Jiang Y, Zhang L, Liu M. Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: substituent and solvent effects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1608-1617. [PMID: 31467823 PMCID: PMC6693415 DOI: 10.3762/bjnano.10.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/09/2019] [Indexed: 05/20/2023]
Abstract
Chiral nanostructures, such as α-helical proteins and double helix DNA, are widely found in biological systems and play a significant role in the biofunction of life. These structures are essentially fabricated through the covalent or noncovalent bonds between small chiral molecules. It is thus an important issue to understand how small chiral molecules can form chiral nanostructures. Here, using a series of isomeric nitrocinnamic amide derivatives, we have investigated the self-assembly behavior and the effect of the substituent position as well as the solvent on the formation of chiral nanostructures. It was found that totally different chiral nanostructures were formed due to the different positions of the nitro group on the cinnamic amide. Moreover, it was found that the chiral sense of the self-assembled nanostructures can be regulated by the solvent whereby helicity inversion was observed. This work provides a simple way to regulate the self-assembly pathway via molecular design and choice of solvent for the controlled creation of chiral nanostructures.
Collapse
Affiliation(s)
- Hejin Jiang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huahua Fan
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqian Jiang
- Laboratory for Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Wang J, Zhang SS, Xu X, Fei KX, Peng YX. A Surface Mediated Supramolecular Chiral Phenomenon for Recognition of l- and d-Cysteine. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1027. [PMID: 30544706 PMCID: PMC6315486 DOI: 10.3390/nano8121027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/04/2023]
Abstract
Chiral recognition is of fundamental importance in chemistry and life sciences and the principle of chiral recognition is instructive in chiral separation and enantioselective catalysis. Non-chiral Ag nanoparticles (NPs) conjugated with chiral cysteine (Cys) molecules demonstrate strong circular dichroism (CD) responses in the UV range. The optical activities of the l-/d-Cys capped Ag NPs are associated with the formation of order arrangements of chiral molecules on the surface of Ag NPs, which are promoted by the electrostatic attraction and hydrogen bonding interaction. The intensity of the chiroptical response is related to the total surface area of Ag NPs in the colloidal solution. The anisotropy factor on the order of 10-2 is acquired for Ag NPs with the size varying from ~2.4 to ~4.5 nm. We demonstrate a simple and effective method for the fabrication of a quantitative chiral sensing platform, in which mesoporous silica coated Ag nanoparticles (Ag@mSiO₂) were used as chiral probes for recognition and quantification of Cys enantiomers.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Shuai-Shuai Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Xu Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Kai-Xuan Fei
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Yin-Xian Peng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
25
|
Zou L, Han D, Yuan Z, Chang D, Ma X. A self-assembled photoresponsive gel consisting of chiral nanofibers. Beilstein J Org Chem 2018; 14:1994-2001. [PMID: 30202453 PMCID: PMC6122117 DOI: 10.3762/bjoc.14.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022] Open
Abstract
A novel compound based on a glutamic acid skeleton, containing azobenzene as a photoresponsive group and ureidopyrimidinone (UPy) as a connection site, was designed and synthesized. The monomer is capable of forming an organogel in nonpolar organic solvents and different types of nanostructures in other solvents. The state of the gel and the chirality of the nanostructures could both be adjusted by subsequent light irradiation at different wavelengths. The helical nanofiber-like morphology was verified in the internal structure of the gel. The performance of this gel was investigated by a series of methods, such as UV–vis absorption spectroscopy, circular dichroism, scanning electron microscopy and rheological techniques. This work provides a new method for facile synthesis of chiro-optical gels.
Collapse
Affiliation(s)
- Lei Zou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Dan Han
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhiyi Yuan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Dongdong Chang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
26
|
Xu L, Gao Y, Kuang H, Liz‐Marzán LM, Xu C. MicroRNA‐Directed Intracellular Self‐Assembly of Chiral Nanorod Dimers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805640] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liguang Xu
- International Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Yifan Gao
- International Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Luis M. Liz‐Marzán
- CIC biomaGUNE and CIBER-BBN Paseo de Miramón 182 2014 Donostia-San Sebastián Spain
- IkerbasqueBasque Foundation for Science 48013 Bilbao Spain
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
27
|
Lu JE, Yang CH, Wang H, Yam C, Yu ZG, Chen S. Plasmonic circular dichroism of vesicle-like nanostructures by the template-less self-assembly of achiral Janus nanoparticles. NANOSCALE 2018; 10:14586-14593. [PMID: 30027984 DOI: 10.1039/c8nr05366a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chiral nanostructures have been attracting extensive interest in recent years primarily because of the unique materials properties that can be exploited for diverse applications. In this study, gold Janus nanoparticles, with hexanethiolates and 3-mercapto-1,2-propanediol segregated on the two hemispheres of the metal cores (dia. 2.7 ± 0.4 nm), self-assembled into vesicle-like, hollow nanostructures in both water and organic media, and exhibited apparent plasmonic circular dichroism (PCD) absorption in the visible range. This was in contrast to individual Janus nanoparticles, bulk-exchange nanoparticles where the two ligands were homogeneously mixed on the nanoparticle surface, or nanoparticles capped with only one kind of ligand. The PCD signals were found to become intensified with increasing coverage of the 3-mercapto-1,2-propanediol ligands on the nanoparticle surface. This was accounted for by the dipolar property of the structurally asymmetrical Janus nanoparticles, and theoretical simulations based on first principles calculations showed that when the nanoparticle dipoles self-assembled onto the surface of a hollow sphere, a vertex was formed which gave rise to the unique chiral characteristics. The resulting chiral nanoparticle vesicles could be exploited for the separation of optical enantiomers, as manifested in the selective identification and separation of d-alanine from the l-isomer.
Collapse
Affiliation(s)
- Jia En Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Xu L, Gao Y, Kuang H, Liz-Marzán LM, Xu C. MicroRNA-Directed Intracellular Self-Assembly of Chiral Nanorod Dimers. Angew Chem Int Ed Engl 2018; 57:10544-10548. [PMID: 29885071 DOI: 10.1002/anie.201805640] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 11/06/2022]
Abstract
MicroRNAs (miRNAs), a kind of single-stranded small RNA molecules, play a crucial role in physiological and pathological processes in human beings. We describe here the detection of miRNA, by side-by-side self-assembly of plasmonic nanorod dimers in living cells, which gives rise to a distinct intense chiroplasmonic response and surface-enhanced Raman scattering (SERS). The dynamic assembly of chiral nanorods was confirmed by fluorescence resonance energy transfer (FRET), also in living cells. Our study provides insights into in situ self-assembly of plasmonic probes for the real-time measurement of biomarkers in living cells. This could improve the current understanding of cellular RNA-protein complexes, pharmaco-genomics, and genetic diagnosis and therapies.
Collapse
Affiliation(s)
- Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Yifan Gao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Luis M Liz-Marzán
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 2014, Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
29
|
Nakagawa M, Kawai T. Chirality-Controlled Syntheses of Double-Helical Au Nanowires. J Am Chem Soc 2018; 140:4991-4994. [PMID: 29613794 DOI: 10.1021/jacs.8b00910] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The selective large-scale syntheses of noble metal nanocrystals with complex shapes using wet-chemical approaches remain exciting challenges. Here we report the chirality-controllable syntheses of double-helical Au nanowires (NWs) using chiral soft-templates composed of two organogelators with their own active functions; one organogelator serves to introduce helicity into the template and the other acts as a capping agent to control the Au shape. One-dimensional twisted-nanoribbon templates are prepared simply by mixing the two organogelators in water containing a small amount of toluene, followed by the addition of LiCl; template chirality is controlled through the selection of the handedness of the helicity-inducing organogelator. Double-helical Au NWs synthesized on these chiral templates have the same helical structure as the template because the Au NWs grow along both edges of the twisted nanoribbons with right- or left-handed helicities. Dispersions of the right- and left-handed double-helical Au NWs exhibit opposite CD signals.
Collapse
Affiliation(s)
- Makoto Nakagawa
- Department of Industrial Chemistry , Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku , Tokyo 162-8601 , Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry , Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku , Tokyo 162-8601 , Japan
| |
Collapse
|
30
|
Li M, Zhang C, Fang L, Shi L, Tang Z, Lu HY, Chen CF. Chiral Nanoparticles with Full-Color and White CPL Properties Based on Optically Stable Helical Aromatic Imide Enantiomers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8225-8230. [PMID: 29436220 DOI: 10.1021/acsami.8b00341] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chiral self-assembled organic nanoparticles with circularly polarized luminescence (CPL) properties can be utilized as a new kind of chiral luminescent materials for practical applications. However, no such chiral organic nanoparticles with full-color and white CPL properties have been reported so far. Herein, five pairs of self-assembled chiral nanoparticles based on optically stable helical aromatic amide enantiomers were conveniently obtained. The chiral nanoparticles showed about 200 nm uniform sphere, high fluorescence quantum yields, and large Stokes shifts. Especially, the chiral nanoparticles exhibited both obvious mirror-image circular dichroism signals and full-color CPL properties with luminescence dissymmetry factors of about 10-3, which were comparable to those of CPL-active quantum dots. Moreover, the chiral organic nanoparticles with white CPL could also be easily achieved using the three-primary-color enantiomers via intermolecular energy resonance transfer.
Collapse
Affiliation(s)
- Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Chao Zhang
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lei Fang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lin Shi
- National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Zhiyong Tang
- National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Hai-Yan Lu
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
31
|
Jiang Q, Liu Q, Shi Y, Wang ZG, Zhan P, Liu J, Liu C, Wang H, Shi X, Zhang L, Sun J, Ding B, Liu M. Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami. NANO LETTERS 2017; 17:7125-7130. [PMID: 28990389 DOI: 10.1021/acs.nanolett.7b03946] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In response to environmental variations, living cells need to arrange the conformational changes of macromolecules to achieve the specific biofunctions. Inspired by natural molecular machines, artificial macromolecular assemblies with controllable nanostructures and environmentally responsive functions can be designed. By assembling macromolecular nanostructures with noble metal nanoparticles, environmental information could be significantly amplified and modulated. However, manufacturing dynamic plasmonic nanostructures that are efficiently responsive to different stimuli is still a challenging task. Here we demonstrate a stimulus-responsive plasmonic nanosystem based on DNA origami-organized gold nanorods (GNRs). L-shaped GNR dimers were assembled on rhombus-shaped DNA origami templates. The geometry and chiral signals of the GNR nanoarchitectures respond to multiple stimuli, including glutathione reduction, restriction enzyme action, pH change, or photoirradiation. While the glutathione reduction or restriction enzyme caused irreversible changes in the plasmonic circular dichroism (CD) signals, both pH and light irradiation triggered reversible changes in the plasmonic CD. Our system transduces external stimuli into conformational changes and circular dichroism responses in near-infrared (NIR) wavelengths. By this approach, programmable optical reporters for essential biological signals can be fabricated.
Collapse
Affiliation(s)
- Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- CAS Key Laboratory of Colloid, Interface and Chemical, Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun North First Street 2, Beijing, 100190, China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yuefeng Shi
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing 100190, China
| | - Zhen-Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Pengfei Zhan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Chao Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Li Zhang
- CAS Key Laboratory of Colloid, Interface and Chemical, Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun North First Street 2, Beijing, 100190, China
| | - Jiashu Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Minghua Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- CAS Key Laboratory of Colloid, Interface and Chemical, Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun North First Street 2, Beijing, 100190, China
| |
Collapse
|
32
|
Huo S, Duan P, Jiao T, Peng Q, Liu M. Self-Assembled Luminescent Quantum Dots To Generate Full-Color and White Circularly Polarized Light. Angew Chem Int Ed Engl 2017; 56:12174-12178. [DOI: 10.1002/anie.201706308] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Shengwei Huo
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 P. R. China
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 P. R. China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 P. R. China
| | - Minghua Liu
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Science; CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; No. 2 ZhongGuanCun BeiYiJie Beijing 100190 P. R. China
| |
Collapse
|
33
|
Huo S, Duan P, Jiao T, Peng Q, Liu M. Self-Assembled Luminescent Quantum Dots To Generate Full-Color and White Circularly Polarized Light. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706308] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shengwei Huo
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 P. R. China
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 P. R. China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 P. R. China
| | - Minghua Liu
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Science; CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; No. 2 ZhongGuanCun BeiYiJie Beijing 100190 P. R. China
| |
Collapse
|