1
|
Philip J. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Adv Colloid Interface Sci 2023; 311:102810. [PMID: 36417827 DOI: 10.1016/j.cis.2022.102810] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Impelled by the need to find solutions to new challenges of modern technologies new materials with unique properties are being explored. Among various new materials that emerged over the decades, magnetic fluids exhibiting interesting physiochemical properties (optical, thermal, magnetic, rheological, apparent density, etc.) under a magnetic stimulus have been at the forefront of research. In the initial phase, there has been a fervent scientific curiosity to understand the field-induced intriguing properties of such fluids but later a plethora of technological applications emerged. Magnetic nanofluid, popularly known as ferrofluid, is a colloidal suspension of fine magnetic nanoparticles, has been at the forefront of research because of its magnetically tunable physicochemical properties and applications. Due to their stimuli-responsive behaviour, they have been finding more applications in biology and other engineering disciplines in recent years. Therefore, a critical review of this topic highlighting the necessary background, the potential of this material for emerging technologies, and the latest developments is warranted. This review also provides a summary of various applications, along with the key challenges and future research directions. The first part of the review addresses the different types of magnetic fluids, the genesis of magnetic fluids, their synthesis methodologies, properties, and stabilization techniques are discussed in detail. The second part of the review highlights the applications of magnetic nanofluids and nanoemulsions (as model systems) in probing order-disorder transitions, scattering, diffraction, magnetically reconfigurable internal structures, molecular interaction, and weak forces between colloidal particles, conformational changes of macromolecules at interfaces and polymer-surfactant complexation at the oil-water interface. The last part of the review summarizes the interesting applications of magnetic fluids such as heat transfer, sensors (temperature, pH, urea detection, cations, defect detection sensors), tunable optical filters, removal of dyes, dynamic seals, magnetic hyperthermia-based cancer therapy and other biomedical applications. The applications of magnetic nanofluids in diverse disciplines are growing day by day, yet there are challenges in their practical adaptation as field-worthy or packaged products. This review provides a pedagogical description of magnetic fluids, with the necessary background, key concepts, physics, experimental protocols, design of experiments, challenges and future directions.
Collapse
Affiliation(s)
- John Philip
- Smart Materials Section, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India.
| |
Collapse
|
2
|
Lee CW, Liu JF, Wei WC, Chiang MH, Chen TY, Liao SH, Chiang YC, Kuo WC, Chen KL, Peng KT, Liu YB, Chieh JJ. Synthesised Conductive/Magnetic Composite Particles for Magnetic Ablations of Tumours. MICROMACHINES 2022; 13:1605. [PMID: 36295958 PMCID: PMC9611394 DOI: 10.3390/mi13101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Ablation is a clinical cancer treatment, but some demands are still unsatisfied, such as electromagnetic interferences amongst multiple ablation needles during large tumour treatments. This work proposes a physical synthesis for composite particles of biocompatible iron oxide particles and liquid metal gallium (Ga) with different alternative-current (AC)-magnetic-field-induced heat mechanisms of magnetic particle hyperthermia and superior resistance heat. By some imaging, X-ray diffraction, and vibrating sample magnetometer, utilised composite particles were clearly identified as the cluster of few iron oxides using the small weight ratio of high-viscosity liquid metal Ga as conjugation materials without surfactants for physical targeting of limited fluidity. Hence, well penetration inside the tissue and the promotion rate of heat generation to fit the ablation requirement of at least 60 °C in a few seconds are achieved. For the injection and the post-injection magnetic ablations, the volume variation ratios of mice dorsal tumours on Day 12 were expressed at around one without tumour growth. Its future powerful potentiality is expected through a percutaneous injection.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City 61363, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Wen-Chun Wei
- Institute of Electro-Optical Engineering, Gongguan Campus, National Taiwan Normal University, Taipei 106, Taiwan
| | - Ming-Hsien Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yuan Chen
- Institute of Electro-Optical Engineering, Gongguan Campus, National Taiwan Normal University, Taipei 106, Taiwan
| | - Shu-Hsien Liao
- Institute of Electro-Optical Engineering, Gongguan Campus, National Taiwan Normal University, Taipei 106, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City 61363, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City 61363, Taiwan
| | - Wen-Cheng Kuo
- Department of Mechanical and Automation Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Kuen-Lin Chen
- Department of Physics, National Chung Hsing University, Taichung 402202, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City 61363, Taiwan
| | - Yen-Bin Liu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Jen-Jie Chieh
- Institute of Electro-Optical Engineering, Gongguan Campus, National Taiwan Normal University, Taipei 106, Taiwan
| |
Collapse
|
3
|
Lee CW, Chiang MH, Wei WC, Liao SS, Liu YB, Huang KC, Chen KL, Kuo WC, Sung YC, Chen TY, Liu JF, Chiang YC, Shih HN, Peng KT, Chieh JJ. Highly efficient magnetic ablation and the contrast of various imaging using biocompatible liquid-metal gallium. Biomed Eng Online 2022; 21:38. [PMID: 35715781 PMCID: PMC9205100 DOI: 10.1186/s12938-022-01003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 05/23/2022] [Indexed: 01/01/2023] Open
Abstract
Background Although the powerful clinical effects of radiofrequency and microwave ablation have been established, such ablation is associated with several limitations, including a small ablation size, a long ablation time, the few treatment positioning, and biosafety risks. To overcome these limitations, biosafe and efficient magnetic ablation was achieved in this study by using biocompatible liquid gallium as an ablation medium and a contrast medium for imaging. Results Magnetic fields with a frequency (f) lower than 200 kHz and an amplitude (H) × f value lower than 5.0 × 109 Am−1 s−1 were generated using the proposed method. These fields could generate an ablation size of 3 cm in rat liver lobes under a temperature of approximately 300 °C and a time of 20 s. The results of this study indicate that biomedical gallium can be used as a contrast medium for the positioning of gallium injections and the evaluation of ablated tissue around a target site. Liquid gallium can be used as an ablation medium and imaging contrast medium because of its stable retention in normal tissue for at least 3 days. Besides, the high anticancer potential of gallium ions was inferred from the self-degradation of 100 µL of liquid gallium after around 21 days of immersion in acidic solutions. Conclusions The rapid wireless ablation of large or multiple lesions was achieved through the simple multi-injection of liquid gallium. This approach can replace the currently favoured procedure involving the use of multiple ablation probes, which is associated with limited benefits and several side effects. Methods Magnetic ablation was confirmed to be highly efficient by the consistent results obtained in the simulation and in vitro tests of gallium and iron oxide as well as the electromagnetic specifics and thermotherapy performance comparison detailed in this study Ultrasound imaging, X-ray imaging, and magnetic resonance imaging were found to be compatible with the proposed magnetic ablation method. Self-degradation analysis was conducted by mixing liquid gallium in acidic solutions with a pH of approximately 5–7 (to imitate a tumour-containing microenvironment). X-ray diffraction was used to identify the gallium oxides produced by degraded gallium ions. Supplementary Information The online version contains supplementary material available at 10.1186/s12938-022-01003-9.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi County, Taiwan.,Department of Orthopedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Ming-Hsien Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chun Wei
- Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
| | - Shu-Shien Liao
- Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
| | - Yen-Bin Liu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuan-Chih Huang
- Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Lin Chen
- Department of Physics, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Cheng Kuo
- Department of Mechanical and Automation Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Yuan-Ching Sung
- Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
| | - Ting-Yuan Chen
- Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi County, Taiwan.,Department of Orthopedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Hsin-Nung Shih
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Ti Peng
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Jen-Jie Chieh
- Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
4
|
Józefczak A, Kaczmarek K, Bielas R. Magnetic mediators for ultrasound theranostics. Theranostics 2021; 11:10091-10113. [PMID: 34815806 PMCID: PMC8581415 DOI: 10.7150/thno.62218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
The theranostics paradigm is based on the concept of combining therapeutic and diagnostic modalities into one platform to improve the effectiveness of treatment. Combinations of multiple modalities provide numerous medical advantages and are enabled by nano- and micron-sized mediators. Here we review recent advancements in the field of ultrasound theranostics and the use of magnetic materials as mediators. Several subdisciplines are described in detail, including controlled drug delivery and release, ultrasound hyperthermia, magneto-ultrasonic heating, sonodynamic therapy, magnetoacoustic imaging, ultrasonic wave generation by magnetic fields, and ultrasound tomography. The continuous progress and improvement in theranostic materials, methods, and physical computing models have created undeniable possibilities for the development of new approaches. We discuss the prospects of ultrasound theranostics and possible expansions of other studies to the theranostic context.
Collapse
Affiliation(s)
- Arkadiusz Józefczak
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Katarzyna Kaczmarek
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, United Kingdom
| | - Rafał Bielas
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Dahiya UR, Gupt GD, Dhaka RS, Kalyanasundaram D. Functionalized Co 2FeAl Nanoparticles for Detection of SARS CoV-2 Based on Reverse Transcriptase Loop-Mediated Isothermal Amplification. ACS APPLIED NANO MATERIALS 2021; 4:5871-5882. [PMID: 37556288 PMCID: PMC8147461 DOI: 10.1021/acsanm.1c00782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/08/2021] [Indexed: 05/12/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is a sensitive, efficient, and rapid nucleic acid amplification technique resulting in a large number of amplicons; however, it suffers from a high incidence of false positives due to carry-over and aerosol. Herein, we report a 10 min nano-capture system that is used in conjunction with a modified reverse transcriptase-LAMP (RT-LAMP) assay for the accurate detection of SARS CoV-2 virus. The nano-capture system employs in-house-designed probe-functionalized magnetic nanoparticles Co2FeAl (cobalt-based Heusler alloy) for efficient capture of contaminating amplicons from the reaction mixture preceding RT-LAMP. The nano-cleaned RT-LAMP assay along with engineered primers successfully detected the presence of 10 copies of SARS CoV-2 virus while completely eliminating the incidence of false positives. The presented contaminant-capture method has been compared with other approaches for elimination of contaminants and was found to be more effective. The insight brought in this work is the design of a rapid nano-capture system that hybridizes with contaminating amplicons (carry-over) with high specificity to enable easy removal from the assay for elimination of false positives. The method has been proven to be successful for RT-LAMP assays in the rapid and highly specific detection of SARS CoV-2, which is currently a major challenge for global health. To the best of our knowledge, this is the first work involving a nano-based cleaning strategy for reliable and rapid diagnosis using isothermal amplification approaches.
Collapse
Affiliation(s)
- Ujjwal Ranjan Dahiya
- Centre for Biomedical Engineering, Indian
Institute of Technology Delhi, New Delhi 110016,
India
| | - Guru Dutt Gupt
- Department of Physics, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Rajendra S. Dhaka
- Department of Physics, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering, Indian
Institute of Technology Delhi, New Delhi 110016,
India
- Department of Biomedical Engineering, All
India Institute of Medical Sciences, New Delhi 110029,
India
| |
Collapse
|
6
|
Xu Y, Zheng H, Schumacher D, Liehn EA, Slabu I, Rusu M. Recent Advancements of Specific Functionalized Surfaces of Magnetic Nano- and Microparticles as a Theranostics Source in Biomedicine. ACS Biomater Sci Eng 2021; 7:1914-1932. [PMID: 33856199 DOI: 10.1021/acsbiomaterials.0c01393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magnetic nano- and microparticles (MNMPs) belong to a highly versatile class of colloids with actuator and sensor properties that have been broadly studied for their application in theranostics such as molecular imaging and drug delivery. The use of advanced biocompatible, biodegradable polymers and polyelectrolytes as MNMP coating materials is essential to ensure the stability of MNMPs and enable efficient drug release while at the same time preventing cytotoxic effects. In the past years, huge progress has been made in terms of the design of MNMPs. Especially, the understanding of coating formation with respect to control of drug loading and release kinetics on the molecular level has significantly advanced. In this review, recent advancements in the field of MNMP surface engineering and the applicability of MNMPs in research fields of medical imaging, diagnosis, and nanotherapeutics are presented and discussed. Furthermore, in this review the main emphasis is put on the manipulation of biological specimens and cell trafficking, for which MNMPs represent a favorable tool enabling transport processes of drugs through cell membranes. Finally, challenges and future perspectives for applications of MNMPs as theranostic nanomaterials are discussed.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - Huabo Zheng
- Department of Cardiology, Pulmonology, Angiology, and Intensive Care, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - David Schumacher
- Department of Anesthesiology, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Elisa Anamaria Liehn
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.,Department of Cardiology, Pulmonology, Angiology, and Intensive Care, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.,Department of Pathology, Institute of Pathology "Victor Babes", Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen, Pauwelstr. 20, 52074 Aachen, Germany
| | - Mihaela Rusu
- Department of Pathology, Institute of Pathology "Victor Babes", Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| |
Collapse
|
7
|
Zhang SF, Lü S, Yang J, Huang M, Liu Y, Liu M. Synthesis of Multiarm Peptide Dendrimers for Dual Targeted Thrombolysis. ACS Macro Lett 2020; 9:238-244. [PMID: 35638687 DOI: 10.1021/acsmacrolett.0c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current thrombolytic agents generally possess low specificity and pose a high risk of intracranial hemorrhage. Here, various generations of multiarm polylactic acid-polyglutamic acid peptide dendrimers were synthesized, and then nattokinase-combining magnetic Fe3O4 nanoparticles and RGD-modified dendrimers (Fe3O4-(4-PLA(G3)4)-RGD) were fabricated for targeted thrombi dissolution. Their in vitro and in vivo thrombolytic properties were determined. In vitro determination indicated that Fe3O4-(4-PLA(G3)4)-RGD/nattokinase provided 3-fold higher blood clot dissolution than that obtained with free nattokinase. An in vivo thrombolytic examination revealed that most of the thrombi were dissolved under an external magnetic field. In addition, there were many nanoparticles in vascular endothelial cells, demonstrating the RGD and magnetic dual targeting capacity of Fe3O4-(4-PLA(G3)4)-RGD/nattokinase. These results demonstrated that Fe3O4-(4-PLA(G3)4)-RGD nanoparticles not only will deliver targeted thrombolytic agents to enhance the efficacy of site-specific thrombolytic treatment but also have potential in the diagnosis of thrombotic disease in its early stages.
Collapse
Affiliation(s)
- Shao-Fei Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Agriculture and Forestry Technology, Longnan Teacher’s College, Longnan 742500, China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiandong Yang
- School of Agriculture and Forestry Technology, Longnan Teacher’s College, Longnan 742500, China
| | - Mengjie Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yongming Liu
- The First School of Clinical Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Guo M, Du W, Lyu N, Chen X, Du Y, Wang H, Yang D, Wu S, Liang J, Pan Y, Tang D. Ultra-Early Diagnosis of Acute Myocardial Infarction in Rats Using Ultrasound Imaging of Hollow Double-Layer Silica Nanospheres. Adv Healthc Mater 2020; 9:e1901155. [PMID: 31867893 DOI: 10.1002/adhm.201901155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/28/2019] [Indexed: 12/20/2022]
Abstract
Timely diagnosis of acute myocardial infarction (AMI) strongly impacts the survival rate of patients. The authors report the development of a two-shell hollow silica contrast agent useful for ultrasound (US) imaging, which is able to provide ultra-early diagnosis of AMI. To target the characterization of fast blood flow and high blood pressure in the heart, two shells of hollow silica are adopted with opposite polarities, which assemble based on amino and perfluorodecyl silanes. The external amino silane facilitates the attachment of disease-targeted groups, while the internal perfluorodecyl silane provides great US imaging contrast. The material also possesses superior water dispersity, controllable morphology, low toxicity, and biodegradability both in vitro and in vivo, thus promoting its applications in the ultra-early diagnosis of AMI in rats, and is particularly useful for delineation of myocardial necrosis sites.
Collapse
Affiliation(s)
- Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University Xuzhou 221004 Jiangsu China
| | - Wencheng Du
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University Xuzhou 221004 Jiangsu China
| | - Nan Lyu
- Xuzhou Central Hospital Xuzhou 221004 Jiangsu China
| | - Xi Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University Xuzhou 221004 Jiangsu China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University Xuzhou 221004 Jiangsu China
| | - Haibo Wang
- Xuzhou Central Hospital Xuzhou 221004 Jiangsu China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University Xuzhou 221004 Jiangsu China
| | - Shihua Wu
- Department of ChemistryZhejiang University Hangzhou 310058 Zhejiang China
| | - Jun Liang
- Xuzhou Central Hospital Xuzhou 221004 Jiangsu China
| | - Yuanjiang Pan
- Department of ChemistryZhejiang University Hangzhou 310058 Zhejiang China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University Xuzhou 221004 Jiangsu China
| |
Collapse
|
9
|
Sun N, Wang D, Yao G, Li X, Mei T, Zhou X, Wong KY, Jiang B, Fang Z. pH-dependent and cathepsin B activable CaCO 3 nanoprobe for targeted in vivo tumor imaging. Int J Nanomedicine 2019; 14:4309-4317. [PMID: 31354262 PMCID: PMC6581754 DOI: 10.2147/ijn.s201722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The intraoperative visualization of tumor cells is a powerful modality for surgical treatment of solid tumors. Since the completeness of tumor excision is closely correlated with the survival of patients, probes that can assist in distinguishing tumor cells are highly demanded. Purpose: In the present study, a fluorescent probe JF1 was synthesized for imaging of tumor cells by conjugating a substrate of cathepsin B (quenching moiety) to Oregon Green derivative JF2 using a self-immolative linker. Methods: JF1 was then loaded into the folate-PEG modified CaCO3 nanoparticles. The folate receptor-targeted, pH-dependent, and cathepsin B activable CaCO3 nanoprobe was test in vitro and in vivo for tumor imaging. Results: CaCO3 nanoprobe demonstrated good stability and fast lighting ability in tumors under low pH conditions. It also showed lower fluorescence background than the single cathepsin B dependent fluorescent probe. The pH-dependent and cathepsin B controlled “turn-on” property enables precise and fast indication of tumor in vitro and in vivo. Conclusion: This strategy of controlled drug delivery enables in vivo imaging of tumor nodules with a high signal-to-noise ratio, which has great potential in surgical tumor treatment.
Collapse
Affiliation(s)
- Ning Sun
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510500, People's Republic of China.,State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Dou Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen 518020, People's Republic of China
| | - Guoqiang Yao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Xiaomei Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510500, People's Republic of China
| | - Ting Mei
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510500, People's Republic of China
| | - Xinke Zhou
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510500, People's Republic of China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Baishan Jiang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Zhiyuan Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510500, People's Republic of China
| |
Collapse
|
10
|
Magnetic particle mapping using magnetoelectric sensors as an imaging modality. Sci Rep 2019; 9:2086. [PMID: 30765847 PMCID: PMC6375992 DOI: 10.1038/s41598-018-38451-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/18/2018] [Indexed: 02/08/2023] Open
Abstract
Magnetic nanoparticles (MNPs) are a hot topic in the field of medical life sciences, as they are highly relevant in diagnostic applications. In this regard, a large variety of novel imaging methods for MNP in biological systems have been invented. In this proof-of-concept study, a new and novel technique is explored, called Magnetic Particle Mapping (MPM), using resonant magnetoelectric (ME) sensors for the detection of MNPs that could prove to be a cheap and efficient way to localize the magnetic nanoparticles. The simple and straightforward setup and measurement procedure includes the detection of higher harmonic excitations of MNP ensembles. We show the feasibility of this approach by building a measurement setup particularly suited to exploit the inherent sensor properties. We measure the magnetic response from 2D MNP distributions and reconstruct the distribution by solving the inverse problem. Furthermore, biological samples with magnetically labeled cells were measured and reconstruction of the distribution was compared with light microscope images. Measurement results suggest that the approach presented here is promising for MNP localization.
Collapse
|
11
|
Guo F, Wu J, Wu W, Huang D, Yan Q, Yang Q, Gao Y, Yang G. PEGylated self-assembled enzyme-responsive nanoparticles for effective targeted therapy against lung tumors. J Nanobiotechnology 2018; 16:57. [PMID: 30012166 PMCID: PMC6048871 DOI: 10.1186/s12951-018-0384-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 01/17/2023] Open
Abstract
Background Matrix-metalloproteinases, which are overexpressed in many types of cancer, can be applied to improve the bioavailability of chemotherapeutic drugs and guide therapeutic targeting. Thus, we aimed to develop enzyme-responsive nanoparticles based on a functionalized copolymer (mPEG-Peptide-PCL), which was sensitive to matrix metalloproteinase, as smart drug vesicles for enhanced biological specificity and reduced side effects. Results The rate of in vitro curcumin (Cur) release from Cur-P-NPs was not markedly accelerated in weakly acidic tumor microenvironment, indicating a stable intracellular concentration and a consistent therapeutic effect. Meanwhile, P-NPs and Cur-P-NPs displayed prominent biocompatibility, biostability, and inhibition efficiency in tumor cells. In addition, Cur-P-NPs showed higher fluorescence intensity than Cur-NPs in tumor cells, implying enhanced cell permeability and targeting ability. Moreover, the internalization and intracellular transport of Cur-P-NPs were mainly via macropinocytosis. Studies of pharmacodynamics and cellular uptake in vitro and biodistribution in vivo demonstrated that Cur-P-NPs had stronger target efficiency and therapeutic effect than Cur-DMSO and Cur-NPs in tumor tissue. Conclusion Results indicate that Cur-P-NPs can be employed for active targeted drug delivery in cancer treatment and other biomedical applications. Electronic supplementary material The online version of this article (10.1186/s12951-018-0384-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Jiangqing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Wenchao Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Dongxue Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Qinying Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
12
|
Liu J, Chen H, Fu Y, Li X, Chen Y, Zhang H, Wang Z. Fabrication of multifunctional ferric oxide nanoparticles for tumor-targeted magnetic resonance imaging and precise photothermal therapy with magnetic field enhancement. J Mater Chem B 2017; 5:8554-8562. [PMID: 32264523 DOI: 10.1039/c7tb01959a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, a biocompatible nanotheranostic platform (termed as Fe2O3@PDA-affibody) has been constructed on the basis of coating a near-infrared light (NIR)-absorbing polydopamine (PDA) shell on oleic acid-capped superparamagnetic ferric oxide nanoparticles (Fe2O3 NPs) using the water-in-oil microemulsion method and then conjugated with affibody ZIGF1R:4551, a peptide with high affinity to tumor and a polyethylene glycol (PEG) stabilizer. The Fe2O3@PDA-affibody integrates T2-weighted magnetic resonance imaging (MRI), tumor-targeting, and magnetic field (MF)-enhanced photothermal therapy (PTT) functionalities into an all-in-one system. The Fe2O3@PDA-affibody shows high negative contrast in the MRI of an SW620 tumor bearing mouse with a decrease of 68% MRI signal, indicating that the Fe2O3@PDA-affibody can recognize tumor with high efficacy and specificity. Furthermore, a high accumulation ratio (>13.5% ID g-1) and enhanced inhibition of tumor growth are achieved under near-infrared (NIR) (808 nm) laser irradiation with the aid of an external MF focused on the targeted tumor, resulting in complete eradication of mouse-borne SW620 tumors without regrowth.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, P. R. China.
| | | | | | | | | | | | | |
Collapse
|