1
|
Li Y, Ma X, Zhu W, Huang Q, Liu Y, Pan J, Ying Y, Xu X, Fu Y. Enzymatic Catalysis in Size and Volume Dual-Confined Space of Integrated Nanochannel-Electrodes Chip for Enhanced Impedance Detection of Salmonella. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300900. [PMID: 37096928 DOI: 10.1002/smll.202300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Nanochannel-based confinement effect is a fascinating signal transduction strategy for high-performance sensing, but only size confinement is focused on while other confinement effects are unexplored. Here, a highly integrated nanochannel-electrodes chip (INEC) is created and a size/volume-dual-confinement enzyme catalysis model for rapid and sensitive bacteria detection is developed. The INEC, by directly sandwiching a nanochannel chip (60 µm in thickness) in nanoporous gold layers, creates a micro-droplet-based confinement electrochemical cell (CEC). The size confinement of nanochannel promotes the urease catalysis efficiency to generate more ions, while the volume confinement of CEC significantly enriches ions by restricting diffusion. As a result, the INEC-based dual-confinement effects benefit a synergetic enhancement of the catalytic signal. A 11-times ion-strength-based impedance response is obtained within just 1 min when compared to the relevant open system. Combining this novel nanoconfinement effects with nanofiltration of INEC, a separation/signal amplification-integrated sensing strategy is further developed for Salmonella typhimurium detection. The biosensor realizes facile, rapid (<20 min), and specific signal readout with a detection limit of 9 CFU mL-1 in culturing solution, superior to most reports. This work may create a new paradigm for studying nanoconfined processes and contribute a new signal transduction technique for trace analysis application.
Collapse
Affiliation(s)
- Yue Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xinyue Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenyue Zhu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiao Huang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yameng Liu
- Department of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
2
|
Sun X, Qiao Y, Zhang M, Cheng Y, Ning F, Zhang H, Hu P. AIE-based cyclodextrin metal-organic frame material for fluorescence detection of nitrofuran and tetracycline antibiotics in aqueous solution. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Zhou H, Guo W, Wang S, Hao T, Wang Z, Hu Y, Wang S, Xie J, Jiang X, Guo Z. Electrochemical aptasensor for Staphylococcus aureus by stepwise signal amplification. Mikrochim Acta 2022; 189:353. [DOI: 10.1007/s00604-022-05401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
|
4
|
Yamamoto K, Ota N, Tanaka Y. Nanofluidic Devices and Applications for Biological Analyses. Anal Chem 2021; 93:332-349. [PMID: 33125221 DOI: 10.1021/acs.analchem.0c03868] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Koki Yamamoto
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobutoshi Ota
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Winterhalter M. Antibiotic uptake through porins located in the outer membrane of Gram-negative bacteria. Expert Opin Drug Deliv 2020; 18:449-457. [PMID: 33161750 DOI: 10.1080/17425247.2021.1847080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Making selective inhibitors of novel Gram-negative targets is not a substantial challenge - getting them into Gram-negative bacteria to reach their lethal target is the bottleneck. Poor permeability of the antibiotic requires high concentration causing off target activity. The lack of simple experimental techniques to measure antibiotic uptake as well as the local concentration at the target site creates a particular bottleneck in understanding and in improving the antibiotic activity.Areas covered: Here we recall current approaches to quantify the uptake. For a few antibiotics with known evidence for channel-limited permeation, the flux across a single OmpF or OmpC channel has been measured. For a typical concentration gradient of 1 µM of antibiotics the uptake varies between one up to few hundred molecules per second and per channel.Expert opinion: The current research effort is on quantifying the flux for a larger list of compounds on a cellular (mass spectra, fluorescence) or at single channel level (electrophysiology). A larger dataset of single channel permeabilities under various condition will be a powerful tool for understanding and improving the activity of antibiotics.
Collapse
|
6
|
Breaching the Barrier: Quantifying Antibiotic Permeability across Gram-negative Bacterial Membranes. J Mol Biol 2019; 431:3531-3546. [DOI: 10.1016/j.jmb.2019.03.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
|
7
|
Gayen A, Kumar D, Matheshwaran S, Chandra M. Unveiling the Modulating Role of Extracellular pH in Permeation and Accumulation of Small Molecules in Subcellular Compartments of Gram-negative Escherichia coli using Nonlinear Spectroscopy. Anal Chem 2019; 91:7662-7671. [PMID: 30986344 DOI: 10.1021/acs.analchem.9b00574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Quantitative evaluation of small molecule permeation and accumulation in Gram-negative bacteria is important for drug development against these bacteria. While these measurements are commonly performed at physiological pH, Escherichia coli and many other Enterobacteriaceae infect human gastrointestinal and urinary tracts, where they encounter different pH conditions. To understand how external pH affects permeation and accumulation of small molecules in E. coli cells, we apply second harmonic generation (SHG) spectroscopy using SHG-active antimicrobial compound malachite green as the probe molecule. Using SHG, we quantify periplasmic and cytoplasmic accumulations separately in live E. coli cells, which was never done before. Compartment-wise measurements reveal accumulation of the probe molecule in cytoplasm at physiological and alkaline pH, while entrapment in periplasm at weakly acidic pH and retention in external solution at highly acidic pH. Behind such disparity in localizations, up to 2 orders of magnitude reduction in permeability across the inner membrane at weakly acidic pH and outer membrane at highly acidic pH are found to play key roles. Our results unequivocally demonstrate the control of external pH over entry and compartment-wise distribution of small molecules in E. coli cells, which is a vital information and should be taken into account in antibiotic screening against E. coli and other Enterobacteriaceae members. In addition, our results demonstrate the ability of malachite green as an excellent SHG-indicator of changes of individual cell membrane and periplasm properties of live E. coli cells in response to external pH change from acidic to alkaline. This finding, too, has great importance, as there is barely any other molecular probe that can provide similar information.
Collapse
|
8
|
Abstract
The transport of small molecules across membranes is essential for the import of nutrients and other energy sources into the cell and, for the export of waste and other potentially harmful byproducts out of the cell. While hydrophobic molecules are permeable to membranes, ions and other small polar molecules require transport via specialized membrane transport proteins . The two major classes of membrane transport proteins are transporters and channels. With our focus here on porins-major class of non-specific diffusion channel proteins , we will highlight some recent structural biology reports and functional assays that have substantially contributed to our understanding of the mechanism that mediates uptake of small molecules, including antibiotics, across the outer membrane of Enterobacteriaceae . We will also review advances in the regulation of porin expression and porin biogenesis and discuss these pathways as new therapeutic targets.
Collapse
Affiliation(s)
- Muriel Masi
- UMR_MD1, Inserm U1261, IRBA, Membranes et Cibles Thérapeutiques, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | | | - Jean-Marie Pagès
- UMR_MD1, Inserm U1261, IRBA, Membranes et Cibles Thérapeutiques, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
9
|
Azizi M, Zaferani M, Dogan B, Zhang S, Simpson KW, Abbaspourrad A. Nanoliter-Sized Microchamber/Microarray Microfluidic Platform for Antibiotic Susceptibility Testing. Anal Chem 2018; 90:14137-14144. [DOI: 10.1021/acs.analchem.8b03817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Morteza Azizi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Meisam Zaferani
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Kenneth W. Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
11
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
12
|
Srinivasan B, Tonddast-Navaei S, Roy A, Zhou H, Skolnick J. Chemical space of Escherichia coli dihydrofolate reductase inhibitors: New approaches for discovering novel drugs for old bugs. Med Res Rev 2018; 39:684-705. [PMID: 30192413 DOI: 10.1002/med.21538] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
Escherichia coli Dihydrofolate reductase is an important enzyme that is essential for the survival of the Gram-negative microorganism. Inhibitors designed against this enzyme have demonstrated application as antibiotics. However, either because of poor bioavailability of the small-molecules resulting from their inability to cross the double membrane in Gram-negative bacteria or because the microorganism develops resistance to the antibiotics by mutating the DHFR target, discovery of new antibiotics against the enzyme is mandatory to overcome drug-resistance. This review summarizes the field of DHFR inhibition with special focus on recent efforts to effectively interface computational and experimental efforts to discover novel classes of inhibitors that target allosteric and active-sites in drug-resistant variants of EcDHFR.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Sam Tonddast-Navaei
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Ambrish Roy
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Hongyi Zhou
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
13
|
Wang S, Wang T, Zhang J, Xu S, Liu H. Disruption of Tumor Cells Using a pH-Activated and Thermosensitive Antitumor Lipopeptide Containing a Leucine Zipper Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8818-8827. [PMID: 29914261 DOI: 10.1021/acs.langmuir.8b00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antitumor peptides may potentially alleviate the problem of chemoresistance but do not yet target tumor cells and would be cytotoxic to normal cells. Here, we designed a pH-activated and thermosensitive lipopeptide (C6-Pep) containing a leucine zipper and an alkyl chain and assessed the ability of C6-Pep to kill cancer cells. Pep, the same sequence without the N-terminal hexanoic acid moiety, was generated as a less hydrophobic control. First, lipopeptide adsorption into lipid monolayers was studied using Langmuir-Blodgett and polarization modulation infrared reflection adsorption spectroscopy. Under weakly acid conditions, electrostatic interactions between C6-Pep and negatively charged phospholipids increased the adsorption/insertion of C6-Pep (vs Pep) into lipid monolayers. Cargo leakage from liposomes was assayed to model lipopeptide-induced lipid membrane disruption. The ability of C6-Pep to disrupt liposomes depended on the peptide molecular structure/hydrophobicity, solution pH, and temperature-induced uncoiling of the zipper structure; the greatest cargo leakage from the liposome with negative charge was observed for C6-Pep at pH 5.5 under mildly hyperthermic conditions (45 °C). In vitro, C6-Pep was significantly more cytotoxic toward HeLa cells at pH 5.5 under hyperthermic conditions than at pH 7.4 and/or 37 °C. Overall, this study demonstrates that amphipathic C6-Pep can insert into cell membranes in the low-pH tumor microenvironment, whereas the application of heat promotes the uncoiling of the zipper structure, leading to the disruption of tumor cell membranes and cell death. pH-activated and thermosensitive C6-Pep represents a promising tool to kill cancer cells via a strategy that does not invoke chemoresistance and may have low side effects.
Collapse
Affiliation(s)
- Sijia Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Tong Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Junqi Zhang
- Key Laboratory of Medical Molecular Virology (MOE & MOH), School of Basic Medical Sciences , Fudan University , Shanghai 200032 , PR China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| |
Collapse
|
14
|
Advances and challenges in bacterial compound accumulation assays for drug discovery. Curr Opin Chem Biol 2018; 44:9-15. [PMID: 29803973 DOI: 10.1016/j.cbpa.2018.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022]
Abstract
The identification of potent in vitro inhibitors of essential bacterial targets is relatively straightforward, however vanishingly few of these molecules have Gram-negative antibacterial potency and spectrum because of a failure to accumulate inside the bacteria. The Gram-negative bacterial cell envelope provides a formidable barrier to entry and couples with efflux pumps to prevent compound accumulation. Assays to measure the cellular permeation, efflux and accumulation of compounds in bacteria continue to be innovated and refined to guide drug discovery. Important advances in the label-free detection of compounds associated with or passing through bacteria rely on mass spectrometry This technique holds the promise of bacterial subcellular resolution and the throughput needed to test libraries of compounds to evaluate structure-accumulation relationships.
Collapse
|
15
|
Abstract
Our limited understanding of the molecular basis for compound entry into and efflux out of Gram-negative bacteria is now recognized as a key bottleneck for the rational discovery of novel antibacterial compounds. Traditional, large-scale biochemical or target-agnostic phenotypic antibacterial screening efforts have, as a result, not been very fruitful. A main driver of this knowledge gap has been the historical lack of predictive cellular assays, tools, and models that provide structure-activity relationships to inform optimization of compound accumulation. A variety of recent approaches has recently been described to address this conundrum. This Perspective explores these approaches and considers ways in which their integration could successfully redirect antibacterial drug discovery efforts.
Collapse
Affiliation(s)
- Rubén Tommasi
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ramkumar Iyer
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alita A. Miller
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|