1
|
Hassan L, Reynoso M, Xu C, Al Zahabi K, Maldonado R, Nicholson RA, Boehm MW, Baier SK, Sharma V. The bubbly life and death of animal and plant milk foams. SOFT MATTER 2024; 20:8215-8229. [PMID: 39370983 DOI: 10.1039/d4sm00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Milk foams are fragile objects, readily prepared for frothy cappuccinos and lattes using bovine milk. However, evolving consumer preferences driven by health, climate change, veganism, and sustainability have created a substantial demand for creating frothy beverages using plant-based milk alternatives or plant milks. In this contribution, we characterize maximum foam volume and half-lifetime as metrics for foamability and foam stability and drainage kinetics of two animal milks (cow and goat) and compared them to those of the six most popular, commercially available plant milks: almond, oat, soy, pea, coconut, and rice. We used three set-ups: an electric frother with cold (10 °C) and hot (65 °C) settings to emulate the real-life application of creating foam for cappuccinos, a commercial device called a dynamic foam analyzer or DFA and fizzics-scope, a bespoke device we built. Fizzics-scope visualizes foam creation, evolution, and destruction using an extended prism-based imaging system facilitating the capture of spatiotemporal variation in foam microstructure over a broader range of heights and liquid fractions. Among the chosen eight milks, oat produces the longest-lasting foams, and rice has the lowest amount and stability of foam. Using the hot settings, animal milks produce more foam volume using an electric frother than the top three plant milks in terms of foamability (oat, pea, and soy). Using the cold settings, oat, soy, and almond outperform cow milk in terms of foam volume and lifetime for foams made with the frother and sparging. Most plant milks have higher viscosity due to added polysaccharide thickeners, and in some, lecithin and saponin can supplement globular proteins as emulsifiers. Our studies combining foam creation by frothing or sparging with imaging protocols to track global foam volume and local bubble size changes present opportunities for contrasting the physicochemical properties and functional attributes of animal and plant-based milk and ingredients for engineering better alternatives.
Collapse
Affiliation(s)
- Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Monse Reynoso
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Karim Al Zahabi
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Ramiro Maldonado
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | | | | | - Stefan K Baier
- Motif FoodWorks Inc., Boston, MA 02210, USA
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| |
Collapse
|
2
|
Xu C, Zhang Y, Sharma V. Spatiotemporal mapping of nanotopography and thickness transitions of ultrathin foam films. SOFT MATTER 2024; 20:3719-3727. [PMID: 38654634 DOI: 10.1039/d4sm00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Freshly formed soap films, soap bubbles, or foam films display iridescent colors due to thin film interference that changes as squeeze flow drives drainage and a progressive decrease in film thickness. Ultrathin (thickness <100 nm) freestanding films of soft matter containing micelles, particles, polyelectrolyte-surfactant complexes, or other supramolecular structures or liquid crystalline phases display drainage via stratification. A fascinating array of thickness variations and transitions, including stepwise thinning and coexistence of thick-thin flat regions, arise in micellar foam films that undergo drainage via stratification. In this tutorial, we describe the IDIOM (interferometry digital imaging optical microscopy) protocols that combine the conventional interferometry principle with digital filtration and image analysis to obtain nanometer accuracy for thickness determination while having high spatial and temporal resolution. We provide fully executable image analysis codes and algorithms for the analysis of nanotopography and summarize some of the unique insights obtained for stratified micellar foam films.
Collapse
Affiliation(s)
- Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, USA.
| | - Yiran Zhang
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, USA.
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Ochoa C, Gao S, Xu C, Srivastava S, Sharma V. Foam film stratification, viscosity, and small-angle X-ray scattering of micellar SDS solutions over an extended concentration range (1< c/CMC < 75). SOFT MATTER 2024; 20:1922-1934. [PMID: 38323381 DOI: 10.1039/d3sm01069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Ultrathin foam films (thickness, h < 100 nm) containing micelles undergo drainage via stratification manifested as coexisting thick-thin flat regions, nanoscopic non-flat topography, and the stepwise decrease in film thickness that yields a characteristic step-size. Most studies characterize the variation in step size and stratification kinetics in micellar foam films in a limited concentration range, c/CMC < 12.5 (c < 100 mM). Likewise, most scattering studies characterize micelle dimensions, intermicellar distance, and volume fraction in bulk aqueous SDS solutions in this limited concentration range. In this contribution, we show drainage via stratification can be observed for concentrations up to c/CMC < 75 (c < 600 mM). Understanding the stratification behavior of freely draining micellar films with sodium dodecyl sulfate (SDS) concentration varying in the range 10 mM ≤ cSDS ≤ 600 mM is essential for molecular engineering, consumer product formulations, and controlling foaming in industrial processes. Here, we visualize and analyze nanoscopic thickness variations and transitions in stratifying foam films using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols. We compare step size obtained from foam stratification to micelle dimension, micelle volume fraction, and intermicellar distance obtained from small angle X-ray scattering studies. Even though the volume fraction increases and approaches 25% at c = 600 mM, the solution viscosity only increases by a factor of four compared to the solvent, consistent with the findings from both stratification and scattering studies. These comparisons allow us to explore the effect of micelle size, morphology, and intermicellar interactions on supramolecular oscillatory structural disjoining pressure, which influences the stratification behavior of draining foam films containing micelles under confinement.
Collapse
Affiliation(s)
- Chrystian Ochoa
- Department of Chemical Engineering, University of Illinois Chicago, 929 W Taylor St, Chicago, IL 60607, USA.
| | - Shang Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, 929 W Taylor St, Chicago, IL 60607, USA.
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Biological Physics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, 929 W Taylor St, Chicago, IL 60607, USA.
| |
Collapse
|
4
|
Zabala-Ferrera O, Beltramo PJ. Effects of Ion Concentration and Headgroup Chemistry on Thin Lipid Film Drainage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16294-16302. [PMID: 37939040 DOI: 10.1021/acs.langmuir.3c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
While the use of lipid nanoparticles in drug delivery applications has grown over the past few decades, much work remains to be done toward the characterization and rational design of the drug carriers. A key feature of delivery is the interaction of the exterior leaflet of the LNP with the outer leaflet of the cell membrane, which relies in part on the fusogenicity of the lipids and the ionic environment. In this paper, we study the interactions between two lipid monolayers using a thin film balance to create lipid thin films and interferometry to measure film evolution. We probe the role of lipid headgroup chemistry and charge, along with ionic solution conditions, in either promoting or hindering film drainage and stability. Specific headgroups phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS) are chosen to represent a combination of charge and fusogenicity. We quantify each film's drainage characteristics over a range of capillary numbers. Qualitatively, we find that films transition from drainage via a large dimple to drainage via channels and vortices as the capillary number increases. Additionally, we observe a transition from electrostatically dominated film drainage at low CaCl2 concentrations to fusogenic-dominated film drainage at higher CaCl2 concentrations for anionic fusogenic (PS) films. Understanding the role of headgroup composition, ionic composition, and ionic concentration will pave the way for the design of tunable vesicle and buffer systems that behave desirably across a range of ex vivo and in vivo environments.
Collapse
Affiliation(s)
- Oscar Zabala-Ferrera
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Hassan L, Xu C, Boehm M, Baier SK, Sharma V. Ultrathin Micellar Foam Films of Sodium Caseinate Protein Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6102-6112. [PMID: 37074870 DOI: 10.1021/acs.langmuir.3c00192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sodium caseinates (NaCas), derived from milk proteins called caseins, are often added to food formulations as emulsifiers, foaming agents, and ingredients for producing dairy products. In this contribution, we contrast the drainage behavior of single foam films made with micellar NaCas solutions with well-established features of stratification observed for the micellar sodium dodecyl sulfate (SDS) foam films. In reflected light microscopy, the stratified SDS foam films display regions with distinct gray colors due to differences in interference intensity from coexisting thick-thin regions. Using IDIOM (interferometry digital imaging optical microscopy) protocols we pioneered for mapping nanotopography of foam films, we showed that drainage via stratification in SDS films proceeds by the expansion of flat domains that are thinner than surrounding by a concentration-dependent step-size, and nonflat features (nanoridges and mesas) form at the moving front. Furthermore, stratifying SDS foam films show stepwise thinning, such that the step-size and terminal film thickness decrease with concentration. Here we visualize the nanotopography in protein films with high spatiotemporal resolution using IDIOM protocols to address two long-standing questions. Do protein foam films formulated with NaCas undergo drainage via stratification? Are thickness transitions and variations in protein foam films determined by intermicellar interactions and supramolecular oscillatory disjoining pressure? In contrast with foam films containing micellar SDS, we find that micellar NaCas foam films display just one step, nonflat and noncircular domains that expand without forming nanoridges and a terminal thickness that increases with NaCas concentration. We infer that the differences in adsorbing and self-assembling unimers triumph over any similarities in the structure and interactions of their micelles.
Collapse
Affiliation(s)
- Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| | - Michael Boehm
- Motif Foodworks, 27 Drydock Avenue, Boston, Massachusetts 02210, United States
| | - Stefan K Baier
- Motif Foodworks, 27 Drydock Avenue, Boston, Massachusetts 02210, United States
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
6
|
Xu C, Martínez Narváez CDV, Kotwis P, Sharma V. Polymer-Surfactant Complexes Impact the Stratification and Nanotopography of Micellar Foam Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5761-5770. [PMID: 37040267 DOI: 10.1021/acs.langmuir.3c00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Freestanding films of soft matter drain via stratification due to confinement-induced structuring and layering of supramolecular structures such as micelles. Neutral polymers, added as rheology modifiers to cosmetics, foods, pharmaceuticals, and petrochemical formulations, often interact with monomers and micelles of surfactants, forming polymer-surfactant complexes. Despite many studies that explore interfacial and bulk rheological properties, the corresponding influence of polymer-surfactant complexes on foam drainage and lifetime is not well understood and motivates this study. Here, we report the discovery and evidence of drainage via stratification in foam films formed with polymer-surfactant (PEO-SDS) complexes. We show that the stratification trifecta of coexisting thick-thin regions, stepwise thinning, and nanoscopic topological features such as nanoridges and mesas can be observed using IDIOM (interferometry, digital imaging, and optical microscopy) protocols we developed for nanoscopic thickness mapping. We determine that for polymer concentrations below overlap concentration and surfactant concentrations beyond the excess micelle point, polymer-surfactant complexation impact the nanoscopic topography but not the step size, implying the amplitude of disjoining pressure changes, but periodicity remains unchanged.
Collapse
Affiliation(s)
- Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Carina D V Martínez Narváez
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Patrycja Kotwis
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
7
|
Ritacco HA. Polyelectrolyte/Surfactant Mixtures: A Pathway to Smart Foams. ACS OMEGA 2022; 7:36117-36136. [PMID: 36278099 PMCID: PMC9583308 DOI: 10.1021/acsomega.2c05739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 05/10/2023]
Abstract
This review deals with liquid foams stabilized by polyelectrolyte/surfactant (PS) complexes in aqueous solution. It briefly reviews all the important aspects of foam physics at several scales, from interfaces to macroscopic foams, needed to understand the basics of these complex systems, focusing on those particular aspects of foams stabilized by PS mixtures. The final section includes a few examples of smart foams based on PS complexes that have been reported recently in the literature. These PS complexes open an opportunity to develop new intelligent dispersed materials with potential in many fields, such as oil industry, environmental remediation, and pharmaceutical industry, among others. However, there is much work to be done to understand the mechanism involved in the stabilization of foams with PS complexes. Understanding those underlying mechanisms is vital to successfully formulate smart systems. This review is written in the hope of stimulating further work in the physics of PS foams and, particularly, in the search for responsive foams based on polymer-surfactant mixtures.
Collapse
|
8
|
Gao S, Ochoa C, Sharma V, Srivastava S. Salt Weakens Intermicellar Interactions and Structuring in Bulk Solutions and Foam Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11003-11014. [PMID: 36044777 DOI: 10.1021/acs.langmuir.2c01592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drainage via stratification in micellar foam films formulated with ionic surfactants shows dramatic changes on salt addition: both the step size and the number of steps in their stepwise thinning diminish. As the stratification process is governed by supramolecular oscillatory structural forces that arise due to confinement-induced structuring of micelles, it is apparent that salt addition reduces the magnitude, periodicity, and decay length of the oscillatory forces. In this contribution, we characterize the changes in micellar size, shape, and interactions on salt addition in bulk solutions using small-angle X-ray scattering (SAXS) to understand and elucidate the influence of salt on stratification in micellar foam films and, more broadly, on the oscillatory structural forces. Adding salt leads to a significant reduction in long-range correlations between micelles and smaller intermicellar distances. These effects manifest as a weakening of the primary peak of the structure factor, ascertained from SAXS spectra, accompanied by its shift to higher wave vectors. Weakened long-range correlations diminish the magnitude and periodicity of the oscillatory disjoining pressure leading to smaller step sizes, fewer steps, and a rich nanoscopic topography, due to the influence of disjoining pressure on the deformable interfaces. The step sizes in stratifying thin films and intermicellar distances in bulk solutions present incongruous values, implying an imperfect analogy with studies on charged nanoparticles with matched and salt concentration-independent values of measured interparticle distances that equal the periodicity of force-distance curves. We anticipate that our findings are significant for multicomponent soft and biological matter containing self-assembled supramolecular structures wherein screened Coulomb interactions govern the self-assembly, interfacial adsorption, interactions, dynamics, and stability.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chrystian Ochoa
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608, United States
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608, United States
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Center for Biological Physics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Bhat B, Pahari S, Liu S, Lin YT, Kwon J, Akbulut M. Nanostructural and Rheological Transitions of pH-Responsive Supramolecular Systems Involving a Zwitterionic Amphiphile and a Triamine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Nanofluid Structural Forces Alter Solid Wetting, Enhancing Oil Recovery. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanofluids have attracted significant research interest for their promising application in enhanced oil recovery. One striking feature leading to the outstanding efficiency of nanofluids in enhanced oil recovery is the structure of nanoparticles, which induces oscillatory structural forces in the confined space between fluid–fluid interfaces or air–liquid and liquid–solid interfaces. To promote the understanding of the oscillatory structural forces and their application in enhanced oil recovery, we reviewed the origin and theory of the oscillatory structural forces, factors affecting their magnitude, and the experimental techniques demonstrating their impacts on enhanced oil recovery. We also reviewed the methods, where the benefits of nanofluids in enhanced oil recovery provided by the oscillatory structural forces are directly manifested. The oscillatory structural forces promote the wetting and spreading of nanofluids on solid surfaces, which ultimately enhances the separation of oil from the reservoir. Some imbibition tests demonstrated as much as 50% increased oil recovery, compared to the cases where the oscillatory structural forces were absent.
Collapse
|
11
|
The foam film's stepwise thinning phenomenon and role of oscillatory forces. Adv Colloid Interface Sci 2022; 303:102636. [PMID: 35306389 DOI: 10.1016/j.cis.2022.102636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
Abstract
As a foam film formed from complex fluids thins, the particles under the film confinement self-organize into layers. Reflected light was used to monitor the rate of layer-by-layer thinning and the layers' thickness. The microscopic and macroscopic films thin using the same stepwise manner (stratify), via layers or stripes with equal thicknesses. The roles of the film area (size) and film capillary pressure on the film stepwise thinning were studied. A micron-sized dot with a thickness one layer less than that of the surrounding film area is observed. The dot expands into a spot when the film reaches the critical area. The 2D dot-spot exhibits a threshold process. The spot expands and the film's stepwise thinning begins. When the film area is reduced, the spot stops expanding and begins to reduce in size. The film slowly recovers its original thickness in a stepwise manner, one layer at a time. It was demonstrated that the film area is the governing factor in the film stepwise thinning rather than the film capillary pressure. A particle dislocation-diffusion-osmotic pressure model is proposed to explain the mechanism of the film stepwise thinning phenomenon via dot-spot formation. The model explains all the features of the foam stepwise thinning phenomenon, including the reversibility of the film's stepwise thinning. For the first time for a film with a thickness less than three layers, a 2D in-layer hexagonal particle entropy structural transition was observed and theoretically predicted by the analysis of the Radial Distribution Function (RDF).
Collapse
|
12
|
Ochoa C, Xu C, Martínez Narváez CDV, Yang W, Zhang Y, Sharma V. Drainage via stratification and nanoscopic thickness transitions of aqueous sodium naphthenate foam films. SOFT MATTER 2021; 17:8915-8924. [PMID: 34545906 DOI: 10.1039/d1sm01169c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sodium naphthenates (NaNs), found in crude oils and oil sands process-affected water (OSPW), can act as surfactants and stabilize undesirable foams and emulsions. Despite the critical impact of soap-like NaNs on the formation, properties, and stability of petroleum and OSPW foams, there is a significant lack of studies that characterize foam film drainage, motivating this study. Here, we contrast the drainage of aqueous foam films formulated with NaN with foams containing sodium dodecyl sulfate (SDS), a well-studied surfactant system, in the relatively low concentration regime (c/CMC < 12.5). The foam films exhibit drainage via stratification, displaying step-wise thinning and coexisting thick-thin regions manifested as distinct shades of gray in reflected light microscopy due to thickness-dependent interference intensity. Using IDIOM (interferometry digital imaging optical microscopy) protocols that we developed, we analyze pixel-wise intensity to obtain thickness maps with high spatiotemporal resolution (thickness <1 nm, lateral ∼500 nm, time ∼10 ms). The analysis of interference intensity variations over time reveals that the aqueous foam films of both SDS and NaN possess an evolving, dynamic, and rich nanoscopic topography. The nanoscopic thickness transitions for stratifying SDS foam films are attributed to the role played by damped supramolecular oscillatory structural disjoining pressure contributed by the confinement-induced layering of spherical micelles. In comparison with SDS, we find smaller concentration-dependent step size and terminal film thickness values for NaN, implying weaker intermicellar interactions and oscillatory structural disjoining pressure with shorter decay length and periodicity.
Collapse
Affiliation(s)
- Chrystian Ochoa
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| | | | - William Yang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Yiran Zhang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Abstract
Ultrathin foam films containing supramolecular structures like micelles in bulk and adsorbed surfactant at the liquid-air interface undergo drainage via stratification. At a fixed surfactant concentration, the stepwise decrease in the average film thickness of a stratifying micellar film yields a characteristic step size that also describes the quantized thickness difference between coexisting thick-thin flat regions. Even though many published studies claim that step size equals intermicellar distance obtained using scattering from bulk solutions, we found no reports of a direct comparison between the two length scales. It is well established that step size is inversely proportional to the cubic root of surfactant concentration but cannot be estimated by adding micelle size to Debye length, as the latter is inversely proportional to the square root of surfactant concentration. In this contribution, we contrast the step size obtained from analysis of nanoscopic thickness variations and transitions in stratifying foam films using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols, that we developed, with the intermicellar distance obtained using small-angle X-ray scattering. We find that stratification driven by the confinement-induced layering of micelles within the liquid-air interfaces of a foam film provides a sensitive probe of non-DLVO (Derjaguin-Landau-Verwey-Overbeek) supramolecular oscillatory structural forces and micellar interactions.
Collapse
|
14
|
Thin liquid films: Where hydrodynamics, capillarity, surface stresses and intermolecular forces meet. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Rondepierre G, Lequeux F, Verneuil E, Passade-Boupat N, Talini L. Spinodal stratification in micellar films between oil and silica. Phys Rev E 2021; 103:052801. [PMID: 34134263 DOI: 10.1103/physreve.103.052801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
We report on the thinning mechanisms of supported films of surfactant (nTAB) solutions above the critical micellar concentration. The films are formed by pressing an oil drop immersed in an aqueous surfactant solution on a silica surface. Depending on the length of the carbon chain of the surfactant and its concentration, two modes of destabilization of the stratified films are observed. The first one proceeds by heterogeneous nucleation, characterized by the lateral expansion of the domain of lower thickness as evidenced long ago in suspended micellar films. In addition, the simultaneous stepwise thinning of several domains, called spinodal stratification, is observed here in supported films. We measure the time evolution of the thickness of the films, and we discuss the selection mechanism of each destabilization mode.
Collapse
Affiliation(s)
- Gaëlle Rondepierre
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 7615, F-75005 Paris, France; Laboratoire Physico-Chimie des Interfaces Complexes, ESPCI Paris, 10 rue Vauquelin, F-75231 Paris, France; and TOTAL SA, Pôle dEtudes et Recherche de Lacq, Boîte Postale 47, 64170 Lacq, France
| | - François Lequeux
- Laboratoire Sciences et Ingénierie de la Matire Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 7615, F-75005 Paris, France and Laboratoire Physico-Chimie des Interfaces Complexes, ESPCI Paris, 10 rue Vauquelin, F-75231 Paris, France
| | - Emilie Verneuil
- Laboratoire Sciences et Ingénierie de la Matire Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 7615, F-75005 Paris, France and Laboratoire Physico-Chimie des Interfaces Complexes, ESPCI Paris, 10 rue Vauquelin, F-75231 Paris, France
| | - Nicolas Passade-Boupat
- Laboratoire Physico-Chimie des Interfaces Complexes, Bâtiment CHEMSTARTUP, Route Dpartementale 817, 64170 Lacq, France and TOTAL SA, Pôle dEtudes et Recherche de Lacq, Boîte Postale 47, 64170 Lacq, France
| | - Laurence Talini
- CNRS, Surface du Verre et Interfaces, Saint-Gobain, 93300 Aubervilliers, France
| |
Collapse
|
16
|
Andrieux S, Muller P, Kaushal M, Macias Vera NS, Bollache R, Honorez C, Cagna A, Drenckhan W. Microfluidic thin film pressure balance for the study of complex thin films. LAB ON A CHIP 2021; 21:412-420. [PMID: 33349822 DOI: 10.1039/d0lc00974a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Investigations of free-standing liquid films enjoy an increasing popularity due to their relevance for many fundamental and applied scientific problems. They constitute soap bubbles and foams, serve as membranes for gas transport or as model membranes in biophysics. More generally, they provide a convenient tool for the investigation of numerous fundamental questions related to interface- and confinement-driven effects in soft matter science. Several approaches and devices have been developed in the past to characterise reliably the thinning and stability of such films, which were commonly created from low-viscosity, aqueous solutions/dispersions. With an increasing interest in the investigation of films made from strongly viscoelastic and complex fluids that may also solidify, the development of a new generation of devices is required to manage reliably the constraints imposed by these formulations. We therefore propose here a microfluidic chip design which allows for the reliable creation, control and characterisation of free-standing films of complex fluids. We provide all technical details and we demonstrate the device functioning for a larger range of systems via a selection of illustrative examples, including films of polymer melts and gelling hydrogels.
Collapse
Affiliation(s)
- Sébastien Andrieux
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, F-67000, Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chandran Suja V, Kannan A, Kubicka B, Hadidi A, Fuller GG. Bubble Coalescence at Wormlike Micellar Solution-Air Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11836-11844. [PMID: 32926631 DOI: 10.1021/acs.langmuir.0c01861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surfactants in aqueous solutions self-assemble in the presence of salt, to form long, flexible, wormlike micelles (WLM). WLM solutions exhibit viscoelastic properties and are used in many applications, such as for cosmetic products, drag reduction, and hydraulic fracturing. Understanding the coalescence stability of bubbles in WLM solutions is important for the development of WLM based products that require a stable dispersion of bubbles. In this paper, we investigate the thin film drainage dynamics leading up to the coalescence of bubbles at flat WLM solution-air interfaces. The salts and surfactant type and concentrations were chosen so as to have the viscoelastic properties of the tested WLM solutions span over 2 orders of magnitude in moduli and relaxation times. The various stages in drainage and coalescence, the formation of a thick region at the apex (a dimple), the thinning and washout of this dimple, and the final stages of drainage before rupture, are modified by the viscoelasticity of the wormlike micellar solutions. As a result of the unique viscoelastic properties of the WLM solutions, we also observe a number of interesting fluid dynamic phenomena during the drainage processes including elastic recoil, thin film ripping, and single-step terminal drainage.
Collapse
Affiliation(s)
- V Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - A Kannan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - B Kubicka
- Department of Mechanical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - A Hadidi
- Department of Mechanical Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - G G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Zhang Y, Sharma V. Thickness-Dependent Phase Transition Drives Nanoridge-to-Mesa Instability in Micellar Freestanding Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7922-7931. [PMID: 29863880 DOI: 10.1021/acs.langmuir.8b01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding fluxes and instabilities within freestanding ultrathin films is necessary for a better understanding of, and control over, the stability and lifetime of foams and emulsions. In micellar foam films, confinement-induced layering of micelles leads to stepwise thinning or stratification that occurs by the expansion of thinner, darker domains. Often, because of a nanoridge-to-mesa instability, one or more brighter white spots or "mesas" appear at the circular moving front between thinner domains and the thicker (less dark) surrounding film. Previous studies assume that the instability and the appearance of white spots are similar to the capillarity-driven Rayleigh instability that leads to the breakup of a coherent liquid jet. Using the IDIOM (interferometry digital imaging optical microscopy) protocols we recently developed, we characterize the nanoridge-to-mesa instability with exquisite spatiotemporal resolution (thickness <1 nm, time <1 ms). The instability could be classified as a Rayleigh instability if a similar sequence of thick and thin undulations is visualized around the expanding domains. However, quantitative analysis reveals that only mesas grow in size after the instability, whereas the rest of the nanoridge preserves its shape. By analogy to the phase separation into compositionally distinct regions, we show that the spontaneous nucleation of thicker mesas in stratifying films is a phase transition driven by the oscillatory nature of the free-energy functional.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Vivek Sharma
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| |
Collapse
|