1
|
Gupta A, Rotake D, Darji A. Sensing lead ions in water: a comprehensive review on strategies and sensor materials. ANAL SCI 2024; 40:997-1021. [PMID: 38523231 DOI: 10.1007/s44211-024-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/25/2024] [Indexed: 03/26/2024]
Abstract
It is well-known fact that elevated lead ions (Pb2+), the third most toxic among heavy metal ions in aqueous systems, pose a threat to human health and aquatic ecosystems when they exceed permissible limits. Pb2+ is commonly found in industrial waste and fertilizers, contaminating water sources and subsequently entering the human body, causing various adverse health conditions. Unlike being expelled, Pb2+ accumulates within the body, posing potential health risks. The harmful impact of presence of Pb2+ in water have prompted researchers to diligently work toward maintaining water quality. Recognizing the importance of Pb2+, this review article makes a sincere and effective effort to address the issues associated with Pb2+. This overview article gives insights into various sensing approaches to detect Pb2+ in water using different sensing materials, including 2-dimensional materials, thiols, quantum dots, and polymers. Herein, different sensing approaches such as electrochemical, optical, field effect transistor-based, micro-electromechanical system-based, and chemi resistive are thoroughly explained. Field effect transistor-based and chemiresistive work on similar principles and are compared on the basis of their fabrication processes and sensing capabilities. In conclusion, future directions for chemiresistive sensors in Pb2+ detection are proposed, emphasizing their simplicity, portability, straightforward functionality, and ease of fabrication. Notably, it sheds light on various thiol and ligand compounds and coupling strategies utilized in Pb2+ detection. This comprehensive study is expected to benefit individuals engaged in Pb2+ detection.
Collapse
Affiliation(s)
- Anju Gupta
- Department of Electronics Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
- Department of Biomedical Engineering, Shri Ramdeobaba College of Engineering and Management, Ramdeo Tekdi, Nagpur, 440013, Maharashtra, India
| | - Dinesh Rotake
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, 502284, Telangana, India.
| | - Anand Darji
- Department of Electronics Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
| |
Collapse
|
2
|
Lei D, Zhang Z, Jiang L. Bioinspired 2D nanofluidic membranes for energy applications. Chem Soc Rev 2024; 53:2300-2325. [PMID: 38284167 DOI: 10.1039/d3cs00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bioinspired two-dimensional (2D) nanofluidic membranes have been explored for the creation of high-performance ion transport systems that can mimic the delicate transport functions of living organisms. Advanced energy devices made from these membranes show excellent energy storage and conversion capabilities. Further research and development in this area are essential to unlock the full potential of energy devices and facilitate the development of high-performance equipment toward real-world applications and a sustainable future. However, there has been minimal review and summarization of 2D nanofluidic membranes in recent years. Thus, it is necessary to carry out an extensive review to provide a survey library for researchers in related fields. In this review, the classification and the raw materials that are used to construct 2D nanofluidic membranes are first presented. Second, the top-down and bottom-up methods for constructing 2D membranes are introduced. Next, the applications of bioinspired 2D membranes in osmotic energy, hydraulic energy, mechanical energy, photoelectric conversion, lithium batteries, and flow batteries are discussed in detail. Finally, the opportunities and challenges that 2D nanofluidic membranes are likely to face in the future are envisioned. This review aims to provide a broad knowledge base for constructing high-performance bioinspired 2D nanofluidic membranes for advanced energy applications.
Collapse
Affiliation(s)
- Dandan Lei
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
3
|
Rahman MM. Membranes for Osmotic Power Generation by Reverse Electrodialysis. MEMBRANES 2023; 13:164. [PMID: 36837667 PMCID: PMC9963266 DOI: 10.3390/membranes13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the utilization of the selective ion transport through porous membranes for osmotic power generation (blue energy) has received a lot of attention. The principal of power generation using the porous membranes is same as that of conventional reverse electrodialysis (RED), but nonporous ion exchange membranes are conventionally used for RED. The ion transport mechanisms through the porous and nonporous membranes are considerably different. Unlike the conventional nonporous membranes, the ion transport through the porous membranes is largely dictated by the principles of nanofluidics. This owes to the fact that the osmotic power generation via selective ion transport through porous membranes is often referred to as nanofluidic reverse electrodialysis (NRED) or nanopore-based power generation (NPG). While RED using nonporous membranes has already been implemented on a pilot-plant scale, the progress of NRED/NPG has so far been limited in the development of small-scale, novel, porous membrane materials. The aim of this review is to provide an overview of the membrane design concepts of nanofluidic porous membranes for NPG/NRED. A brief description of material design concepts of conventional nonporous membranes for RED is provided as well.
Collapse
Affiliation(s)
- Md Mushfequr Rahman
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
4
|
Wang S, Wang Z, Fan Y, Meng X, Wang F, Yang N. Toward explicit anion transport nanochannels for osmotic power energy using positive charged MXene membrane via amination strategy. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Rehman F, Memon FH, Ali A, Khan SM, Soomro F, Iqbal M, Thebo KH. Recent progress on fabrication methods of graphene-based membranes for water purification, gas separation, and energy sustainability. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Graphene-based layered materials have got significant interest in membrane technology for water desalination, gas separation, organic nanofiltration, pervaporation, proton exchange applications, etc. and show remarkable results. Up to date, various methods have been developed for fabrication of high performance membrane. Most of them are only suitable for research purposes, but not appropriate for mass transport barrier and membrane applications that require large-area synthesis. In this comprehensive review, we summarized the current synthesis and fabrication methods of graphene-based membranes. Emphasis will be given on fabrication of both graphene-based nanoporous and lamellar membranes. Finally, we discuss the current engineering hurdles and future research directions yet to be explored for fabrication of such membranes.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sukkur , Sindh , Pakistan
| | - Akbar Ali
- Department of Molecular Engineering , Faculty of Process and Environmental Engineering, Lodz University of Technology , Lodz , Poland
| | - Shah Masaud Khan
- Department of Horticulture , Faculty of Basic Science and Applied Sciences, The University of Haripur KPK , Haripur , KPK , 22620 , Pakistan
| | - Faheeda Soomro
- Department of Human & Rehabilitation Sciences , Begum Nusrat Bhutto Women University , Sukkur , Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry , Faculty of Natural Science, The University of Haripur KPK , Haripur , KPK , 22620 , Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS) , Shenyang , China
| |
Collapse
|
6
|
A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives. ENERGIES 2021. [DOI: 10.3390/en14185819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ion transport is a significant concept that underlies a variety of technologies including membrane technology, energy storages, optical, chemical, and biological sensors and ion-mobility exploration techniques. These applications are based on the concepts of capacitance and ion transport, so a prior understanding of capacitance and ion transport phenomena is crucial. In this review, the principles of capacitance and ion transport are described from a theoretical and practical point of view. The review covers the concepts of Helmholtz capacitance, diffuse layer capacitance and space charge capacitance, which is also referred to as quantum capacitance in low-dimensional materials. These concepts are attributed to applications in the electrochemical technologies such as energy storage and excitable ion sieving in membranes. This review also focuses on the characteristic role of channel heights (from micrometer to angstrom scales) in ion transport. Ion transport technologies can also be used in newer applications including biological sensors and multifunctional microsupercapacitors. This review improves our understanding of ion transport phenomena and demonstrates various applications that is applicable of the continued development in the technologies described.
Collapse
|
7
|
Hsu WS, Preet A, Lin TY, Lin TE. Miniaturized Salinity Gradient Energy Harvesting Devices. Molecules 2021; 26:molecules26185469. [PMID: 34576940 PMCID: PMC8466105 DOI: 10.3390/molecules26185469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Harvesting salinity gradient energy, also known as "osmotic energy" or "blue energy", generated from the free energy mixing of seawater and fresh river water provides a renewable and sustainable alternative for circumventing the recent upsurge in global energy consumption. The osmotic pressure resulting from mixing water streams with different salinities can be converted into electrical energy driven by a potential difference or ionic gradients. Reversed-electrodialysis (RED) has become more prominent among the conventional membrane-based separation methodologies due to its higher energy efficiency and lesser susceptibility to membrane fouling than pressure-retarded osmosis (PRO). However, the ion-exchange membranes used for RED systems often encounter limitations while adapting to a real-world system due to their limited pore sizes and internal resistance. The worldwide demand for clean energy production has reinvigorated the interest in salinity gradient energy conversion. In addition to the large energy conversion devices, the miniaturized devices used for powering a portable or wearable micro-device have attracted much attention. This review provides insights into developing miniaturized salinity gradient energy harvesting devices and recent advances in the membranes designed for optimized osmotic power extraction. Furthermore, we present various applications utilizing the salinity gradient energy conversion.
Collapse
Affiliation(s)
- Wei-Shan Hsu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (W.-S.H.); or (A.P.)
| | - Anant Preet
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (W.-S.H.); or (A.P.)
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
- Department of Chemistry, College of Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Biomedical Industry Ph.D. Program, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (W.-S.H.); or (A.P.)
- Correspondence: ; Tel.: +886-(03)-573-1750
| |
Collapse
|
8
|
Su S, Wang X, Xue J. Nanopores in two-dimensional materials: accurate fabrication. MATERIALS HORIZONS 2021; 8:1390-1408. [PMID: 34846448 DOI: 10.1039/d0mh01412e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials such as graphene and molybdenum disulfide have been demonstrated with a wide range of applications in electronic devices, chemical catalysis, single-molecule detection, and energy conversion. In the 2D materials, nanopores can be created, and the 2D nanoporous membranes possess many unique properties such as ultrathin thickness, high surface area, and excellent particle sieving capability, showing extraordinary promise in plenty of applications, such as sea water desalination, gas separation, and DNA sequencing. The performances of these membranes are mainly determined by the nanopore size, structure, and density, which, in turn, rely on the fabrication techniques of the nanopores. This review covers the important progress of nanopore fabrication in 2D materials and comprehensively compares these methods for the features of the introduced nanopores and their formation processes. Future perspectives are discussed on the opportunities and challenges in fabricating high-grade 2D nanopores.
Collapse
Affiliation(s)
- Shihao Su
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China.
| | | | | |
Collapse
|
9
|
Yang G, Liu D, Chen C, Qian Y, Su Y, Qin S, Zhang L, Wang X, Sun L, Lei W. Stable Ti 3C 2T x MXene-Boron Nitride Membranes with Low Internal Resistance for Enhanced Salinity Gradient Energy Harvesting. ACS NANO 2021; 15:6594-6603. [PMID: 33787220 DOI: 10.1021/acsnano.0c09845] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Extracting salinity gradient energy through a nanomembrane is an efficient way to obtain clean and renewable energy. However, the membranes with undesirable properties, such as low stability, high internal resistance, and low selectivity, would limit the output performance. Herein, we report two-dimensional (2D) laminar nanochannels in the hybrid Ti3C2Tx MXene/boron nitride (MXBN) membrane with excellent stability and reduced internal resistance for enhanced salinity gradient energy harvesting. The internal resistance of the MXBN membrane is significantly reduced after adding BN in a pristine MXene membrane, due to the small size and high surface charge density of BN nanosheets. The output power density of the MXBN membrane with 44 wt % BN nanosheets reaches 2.3 W/m2, almost twice that of a pristine MXene membrane. Besides, the output power density can be further increased to 6.2 W/m2 at 336 K and stabilizes for 10 h at 321 K, revealing excellent structure stability of the membrane in long-term aqueous conditions. This work presents a feasible method for improving the channel properties, which provides 2D layered composite membranes in ion transport, energy extraction, and other nanofluidic applications.
Collapse
Affiliation(s)
- Guoliang Yang
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Dan Liu
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Cheng Chen
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yijun Qian
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Yuyu Su
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Si Qin
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Liangzhu Zhang
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Xungai Wang
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Lu Sun
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Weiwei Lei
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| |
Collapse
|
10
|
Carbon nanotube-supported polyamide membrane with minimized internal concentration polarization for both aqueous and organic solvent forward osmosis process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118273] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Oxidation promoted osmotic energy conversion in black phosphorus membranes. Proc Natl Acad Sci U S A 2020; 117:13959-13966. [PMID: 32513735 DOI: 10.1073/pnas.2003898117] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional (2D) nanofluidic ion transporting membranes show great promise in harvesting the "blue" osmotic energy between river water and sea water. Black phosphorus (BP), an emerging layered material, has recently been explored for a wide range of ambient applications. However, little attention has been paid to the extraction of the worldwide osmotic energy, despite its large potential as an energy conversion membrane. Here, we report an experimental investigation of BP membrane in osmotic energy conversion and reveal how the oxidation of BP influences power generation. Through controllable oxidation in water, power output of the BP membrane can be largely enhanced, which can be attributed to the generated charged phosphorus compounds. Depending on the valence of oxidized BP that is associated with oxygen concentration, the power density can be precisely controlled and substantially promoted by ∼220% to 1.6 W/m2 (compared with the pristine BP membrane). Moreover, through constructing a heterostructure with graphene oxide, ion selectivity of the BP membrane increases by ∼80%, contributing to enhanced charge separation efficiency and thus improved performance of ∼4.7 W/m2 that outperforms most of the state-of-the-art 2D nanofluidic membranes.
Collapse
|
12
|
Caglar M, Silkina I, Brown BT, Thorneywork AL, Burton OJ, Babenko V, Gilbert SM, Zettl A, Hofmann S, Keyser UF. Tunable Anion-Selective Transport through Monolayer Graphene and Hexagonal Boron Nitride. ACS NANO 2020; 14:2729-2738. [PMID: 31891480 PMCID: PMC7098055 DOI: 10.1021/acsnano.9b08168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/31/2019] [Indexed: 05/23/2023]
Abstract
Membranes that selectively filter for both anions and cations are central to technological applications from clean energy generation to desalination devices. 2D materials have immense potential as these ion-selective membranes due to their thinness, mechanical strength, and tunable surface chemistry; however, currently, only cation-selective membranes have been reported. Here we demonstrate the controllable cation and anion selectivity of both monolayer graphene and hexagonal boron nitride. In particular, we measure the ionic current through membranes grown by chemical vapor deposition containing well-known defects inherent to scalably produced and wet-transferred 2D materials. We observe a striking change from cation selectivity with monovalent ions to anion selectivity by controlling the concentration of multivalent ions and inducing charge inversion on the 2D membrane. Furthermore, we find good agreement between our experimental data and theoretical predictions from the Goldman-Hodgkin-Katz equation and use this model to extract selectivity ratios. These tunable selective membranes conduct up to 500 anions for each cation and thus show potential for osmotic power generation.
Collapse
Affiliation(s)
- Mustafa Caglar
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Inese Silkina
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Bertram T. Brown
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Alice L. Thorneywork
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Oliver J. Burton
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Vitaliy Babenko
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Stephen Matthew Gilbert
- Department
of Physics, University of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli Energy
NanoScience Institute at the University of California, Berkeley and
the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex Zettl
- Department
of Physics, University of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli Energy
NanoScience Institute at the University of California, Berkeley and
the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephan Hofmann
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Ulrich F. Keyser
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
13
|
Lee CW, Suh JM, Jang HW. Chemical Sensors Based on Two-Dimensional (2D) Materials for Selective Detection of Ions and Molecules in Liquid. Front Chem 2019; 7:708. [PMID: 31803712 PMCID: PMC6873591 DOI: 10.3389/fchem.2019.00708] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/09/2019] [Indexed: 01/27/2023] Open
Abstract
Up until now, two-dimensional (2D) materials have been researched vigorously for application to sensing ions and molecules in liquid due to their unique structural, chemical, and electronic properties. Features of 2D materials such as high surface area-to-volume ratios and various reaction sites are ideal characteristics for fabricating state-of-the-art high-performed chemical sensors. This review particularly focuses on the detection of pH, metal ions, and biomolecules in liquid media. The final goal of the ion/molecule sensors is a development of the electronic tongue or taste sensors that can be used in medical, food, biotechnology, and health applications. Herein, we introduce recent advances in the field of ion/molecule sensors in liquid media based on 2D materials, especially concentrating in graphene and MoS2, and will emphasize the opportunities and challenges of these unique sensing materials and devices.
Collapse
Affiliation(s)
- Chung Won Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, South Korea
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, South Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Fan FR, Wu W. Emerging Devices Based on Two-Dimensional Monolayer Materials for Energy Harvesting. RESEARCH (WASHINGTON, D.C.) 2019; 2019:7367828. [PMID: 31912044 PMCID: PMC6944488 DOI: 10.34133/2019/7367828] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022]
Abstract
Two-dimensional (2-D) materials of atomic thickness have attracted considerable interest due to their excellent electrical, optoelectronic, mechanical, and thermal properties, which make them attractive for electronic devices, sensors, and energy systems. Scavenging the otherwise wasted energy from the ambient environment into electrical power holds promise to address the emerging energy needs, in particular for the portable and wearable devices. The versatile properties of 2-D materials together with their atomically thin body create diverse possibilities for the conversion of ambient energy. The present review focuses on the recent key advances in emerging energy-harvesting devices based on monolayer 2-D materials through various mechanisms such as photovoltaic, thermoelectric, piezoelectric, triboelectric, and hydrovoltaic devices, as well as progress for harvesting the osmotic pressure and Wi-Fi wireless energy. The representative achievements regarding the monolayer heterostructures and hybrid devices are also discussed. Finally, we provide a discussion of the challenges and opportunities for 2-D monolayer material-based energy-harvesting devices in the development of self-powered electronics and wearable technologies.
Collapse
Affiliation(s)
- Feng Ru Fan
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
15
|
Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat Commun 2019; 10:2920. [PMID: 31266937 PMCID: PMC6606750 DOI: 10.1038/s41467-019-10885-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/06/2019] [Indexed: 11/08/2022] Open
Abstract
Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m-2). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m-2, outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients.
Collapse
|
16
|
Aqueous proton-selective conduction across two-dimensional graphyne. Nat Commun 2019; 10:1165. [PMID: 30858364 PMCID: PMC6412031 DOI: 10.1038/s41467-019-09151-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 02/21/2019] [Indexed: 11/08/2022] Open
Abstract
The development of direct methanol fuel cells is hindered by the issue of methanol crossover across membranes, despite the remarkable features resulting from the use of liquid fuel. Here we investigate the proton-selective conduction behavior across 2D graphyne in an aqueous environment. The aqueous proton conduction mechanism transitions from bare proton penetration to a mixed vehicular and Grotthuss transportation when the side length of triangular graphyne pores increases to 0.95 nm. A further increase in the side length to 1.2 nm results in the formation of a patterned aqueous/vacuum interphase, enabling protons to be conducted through the water wires via Grotthuss mechanism with low energy barriers. More importantly, it is found that 2D graphyne with the side length of less than 1.45 nm can effectively block methanol crossover, suggesting that 2D graphyne with an appropriate pore size is an ideal material to achieve zero-crossover proton-selective membranes.
Collapse
|
17
|
Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, Samorì P. Chemical sensing with 2D materials. Chem Soc Rev 2018; 47:4860-4908. [DOI: 10.1039/c8cs00417j] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the last decade, two-dimensional materials (2DMs) have attracted great attention due to their unique chemical and physical properties, which make them appealing platforms for diverse applications in sensing of gas, metal ions as well as relevant chemical entities.
Collapse
Affiliation(s)
| | - Włodzimierz Czepa
- Faculty of Chemistry
- Adam Mickiewicz University
- 61614 Poznań
- Poland
- Centre for Advanced Technologies
| | | | | | | | - Paolo Samorì
- Université de Strasbourg
- CNRS
- ISIS
- 67000 Strasbourg
- France
| |
Collapse
|