1
|
Kaliberda ME, Pogarsky SA, Kostenko OV, Nosych OI, Zinenko TL. Circular quantum wire symmetrically loaded with a graphene strip as the plasmonic micro/nano laser: threshold conditions analysis. OPTICS EXPRESS 2024; 32:12213-12227. [PMID: 38571051 DOI: 10.1364/oe.514643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
We study, apparently for the first time, the threshold conditions for the time-harmonic natural modes of the micro-to-nanosize plasmonic laser shaped as a circular quantum wire with a flat graphene strip, placed symmetrically inside it, in the H-polarization case. We suppose that the quantum wire is made of a nonmagnetic gain material, characterized with the aid of the "active" imaginary part of the complex refractive index. The emergence of lasers integrating plasmonic effects marks a significant trend in contemporary photonics. Here, the graphene offers a promising alternative to the noble metals as it exhibits the capacity to sustain plasmon-polariton natural surface waves across the infrared and terahertz (THz) spectra. The used innovative approach is the lasing eigenvalue problem (LEP), which is classical electromagnetic field boundary-value problem, adapted to the presence of active region. It is tailored to deliver both the mode-specific emission frequency, which is purely real at the threshold, and the value of the gain index of the active region, necessary to make the frequency real-valued. The conductivity of graphene is characterized using the quantum Kubo formalism. We reduce the LEP for the considered nanolaser to a hyper-singular integral equation for the current on the strip and discretize it by the Nystrom-type method. This method is meshless and computationally economic. After discretization, a matrix equation is obtained. The sought for mode-specific pairs {the frequency and the threshold gain index} correspond to the zeros of the matrix determinant. It should be noted that the convergence to exact LEP eigenvalues is guaranteed mathematically if the discretization order is taken progressively larger. Two families of modes are identified and studied: the modes of the quantum wire, perturbed by the presence of the graphene strip and the plasmon modes of the strip. The frequencies of all plasmon modes and the lowest mode of the quantum wire are found to be well-tuned by changing the chemical potential of graphene. Engineering analytic formulas for the plasmon-mode frequencies and thresholds are derived. We believe that the presented results can be used in the creation of single-mode tunable micro and nanolasers.
Collapse
|
2
|
Herasymova DO, Dukhopelnykov SV, Natarov DM, Zinenko TL, Lucido M, Nosich AI. Threshold conditions for transversal modes of tunable plasmonic nanolasers shaped as single and twin graphene-covered circular quantum wires. NANOTECHNOLOGY 2022; 33:495001. [PMID: 36044815 DOI: 10.1088/1361-6528/ac8e0c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We implement the lasing eigenvalue problem (LEP) approach to study the electromagnetic field in the presence of a circular quantum wire (QW) made of a gain material and wrapped in graphene cover and a dimer of two identical graphene-covered QWs, at the threshold of stationary emission. LEP delivers the mode-specific eigenvalue pairs, namely the frequencies and the threshold values of the QW gain index for the plasmon and the wire modes of such nanolasers. In our analysis, we use quantum Kubo formalism for the graphene conductivity and classical Maxwell boundary-value problem for the field functions. The technique involves the resistive boundary conditions, the separation of variables in the local coordinates, and, for the dimer, the addition theorem for the cylindrical functions. For single-wire plasmonic laser, we derive approximate engineering expressions for the lasing frequencies and threshold values of the gain index that complement the full-wave computations. For the dimer, we derive separate determinantal equations for four different classes of symmetry of the lasing supermodes and solve them numerically. Our investigation of the mode frequencies and thresholds versus the graphene and QW parameters shows that plasmon modes or, for the dimer, plasmon supermodes have lower frequencies and thresholds than the wire modes provided that the QW radius is smaller than 10μm, however in thicker wires they are comparable. Only the plasmon-mode characteristics are well-tunable using the graphene chemical potential. In the dimer, all lasing supermodes form closely located quartets, however, they quickly approach the single-wire case if the inter-wire separation becomes comparable to the radius. These results open a way for building essentially single-mode plasmonic nanolasers and their arrays and suggest certain engineering rules for their design.
Collapse
Affiliation(s)
- Dariia O Herasymova
- Laboratory of Micro and Nano Optics, Institute of Radio-Physics and Electronics NASU, Kharkiv, Ukraine
| | - Sergii V Dukhopelnykov
- Laboratory of Micro and Nano Optics, Institute of Radio-Physics and Electronics NASU, Kharkiv, Ukraine
- Department of Applied Mathematics, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Denys M Natarov
- Laboratory of Micro and Nano Optics, Institute of Radio-Physics and Electronics NASU, Kharkiv, Ukraine
| | - Tatiana L Zinenko
- Laboratory of Micro and Nano Optics, Institute of Radio-Physics and Electronics NASU, Kharkiv, Ukraine
| | - Mario Lucido
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Alexander I Nosich
- Laboratory of Micro and Nano Optics, Institute of Radio-Physics and Electronics NASU, Kharkiv, Ukraine
| |
Collapse
|
3
|
Gettapola K, Gunapala SD, Premaratne M. Directional energy transport in strongly coupled chiral quantum emitter plasmonic nanostructures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:475301. [PMID: 34425568 DOI: 10.1088/1361-648x/ac203f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Achieving directional exciton energy transport can revolutionize a plethora of applications that depend on exciton energy transfer. In this study, we theoretically analyse a system that comprises a collection of chiral quantum emitters placed in a plasmonic setup made up of a metal nanoparticle trimer. We investigate the system by pumping left and right circularly polarized photons to excite the system. We observe that the generated localized surface plasmon modes are polarization-depended, causing chiral coupling between the quantum emitters and the plasmon optical modes. Based on the plasmon field intensity profiles, we show that directional exciton transport can be obtained when the light-matter interaction becomes adequately strong, leading the system towards the strong coupling regime.
Collapse
Affiliation(s)
- Kamani Gettapola
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sarath D Gunapala
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States of America
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Pathiranage S, Gunapala SD, Premaratne M. Tunable plasmonic resonator using conductivity modulated Bragg reflectors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:245301. [PMID: 33631723 DOI: 10.1088/1361-648x/abe9d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
We design a tunable plasmonic resonator that may have applications in sensing and plasmon generation-our design uses graphene-based Bragg reflectors of periodically modulated conductivity. Specifically, we explore and utilize the ability to use an array of Gaussian conductivity gratings as fully reflecting mirrors for surface plasmon polaritons (SPPs) propagating along a two-dimensional graphene sheet sandwiched between two dielectric materials. Graphene supports SPPs in the near-infrared to terahertz (THz) regime of the electromagnetic spectrum compared to those observed in metal-dielectric systems. Our resonator is fundamentally different from other similar published resonator designs because the distributed reflectors provide light confinement in both the horizontal and the vertical directions. As a result, the resonator is compact in the vertical-direction as we no longer use traditional mirrors or dielectric assisted gratings. Besides, conventional resonator designs only support a single, fixed resonant frequency, set by the mirror reflectivity and the cavity material's properties. The versatility of graphene is that its Fermi energy can be electrically varied, thus allowing us to change the peak reflectivity of the graphene Bragg-grating without physically changing its physical dimensions. Therefore, by varying the Bragg wavelength, we can shift the resonance frequency of the cavity. One use of our resonator is in plasmonic lasers. We illustrate this use by analyzing the resonator parameters such as the linewidth and the quality factor of the plasmonic resonator.
Collapse
Affiliation(s)
- Sachinthana Pathiranage
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sarath D Gunapala
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States of America
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
De Silva N, Warnakula T, Gunapala SD, Stockman MI, Premaratne M. Effect of logarithmic perturbations in ohmic like spectral densities in dynamics of electronic excitation using variational polaron transformation approach. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:145304. [PMID: 33503593 DOI: 10.1088/1361-648x/abe078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Electronic excitation energy transfer is a ubiquitous process that has generated prime research interest since its discovery. Recently developed variational polaron transformation-based second-order master equation is capable of interpolating between Förster and Redfield limits with exceptional accuracy. Forms of spectral density functions studied so far through the variational approach provide theoretical support for various experiments. Recently introduced ohmic like spectral density function that can account for logarithmic perturbations provides generality and exposition to a unique and practical set of environments. In this paper, we exploit the energy transfer dynamics of a two-level system attached to an ohmic like spectral density function with logarithmic perturbations using a variational polaron transformed master equation. Our results demonstrate that even for a relatively large bath coupling strength, quantum coherence effects can be increased by introducing logarithmic perturbations of the order of one and two in super-ohmic environments. Moreover, for particular values of the ohmicity parameter, the effect of logarithmic perturbations is observed to be insignificant for the overall dynamics. In regard to ohmic environments, as logarithmic perturbations increase, damping characteristics of the coherent transient dynamics also increase in general. It is also shown that, having logarithmic perturbations of the order of one in an ohmic environment can result in a less efficient energy transfer for relatively larger system bath coupling strengths.
Collapse
Affiliation(s)
- Nisal De Silva
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tharindu Warnakula
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sarath D Gunapala
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States of America
| | - Mark I Stockman
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, United States of America
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Yu Y, Xiao F, He C, Jin R, Zhu W. Double-arrow metasurface for dual-band and dual-mode polarization conversion. OPTICS EXPRESS 2020; 28:11797-11805. [PMID: 32403683 DOI: 10.1364/oe.392586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present experimentally a double-arrow metasurface for high-efficiently manipulating the polarization states of electromagnetic waves in the dual-band. The metasurface is capable of converting a linearly polarized (LP) incident wave into a circularly polarized (CP) wave or its cross-polarized LP wave at different frequencies. It is numerically shown that in the two bands from 14.08 to 15.71 GHz and from 17.63 to 19.55 GHz the metasurface can convert the LP wave into CP wave, of which the axis ratio is lower than 3 dB. Meanwhile, the proposed metasurface also can convert the LP wave into its cross-polarized LP wave at 13.39 GHz and 20.29 GHz. To validate the theoretical analysis and simulated results, a prototype is fabricated and measured. The experimental results are reasonably consistent with the theoretical and simulated results, which demonstrates that such a metasurface can successfully achieve dual-band and dual-mode polarization conversion.
Collapse
|
7
|
Hapuarachchi H, Gunapala SD, Premaratne M. Plasmonic metaresonances: harnessing nonlocal effects for prospective biomedical applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:325301. [PMID: 30897555 DOI: 10.1088/1361-648x/ab1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal nanoparticles (MNPs) possess optical concentration capabilities that can amplify and localize electromagnetic fields into nanometer length scales. The near-fields of MNPs can be used to tailor optical response of luminescent semiconductor quantum dots (QDs), resulting in fascinating optical phenomena. Plasmonic metaresonances (PMRs) form a class of such optical events gaining increasing popularity due to their promising prospects in sensing and switching applications. Unlike the basic excitonic and plasmonic resonances in MNP-QD nanohybrids, PMRs occur in the space/time domain. A nanohybrid experiences PMR when system parameters such as QD dipole moment, MNP-QD centre separation or submerging medium permittivity reach critical values, resulting in the plasmonically induced time delay of the effective Rabi frequency experienced by the QD asymptotically tending to infinity. Theoretical analyses of PMRs available in the literature utilize the local response approximation (LRA) which does not account for the nonlocal effects of the MNP, and neglect the MNP dependence of the QD decay and dephasing rates which hinder their applicability to QDs in the close vicinity of small MNPs. Here, we address these limitations using an approach based on the generalized nonlocal optical response (GNOR) theory which has proven to yield successful theoretical explanations of experimentally observed plasmonic phenomena. Our results indicate that, omission of the MNP nonlocal response and the associated decay/dephasing rate modifications of the QD tend to raise implications such as significant over-estimation of the QD dipole moment required to achieve PMR, under-estimation of the critical centre separation and prediction of significantly lower near-PMR QD absorption rates, in comparison to the improved GNOR based predictions. In light of our observations, we finally suggest two prospective applications of PMR based nanoswitches, namely, aptamer based in vitro cancer screening and thermoresponsive polymer based temperature sensing. To demonstrate the latter application, we develop and utilize a proof of concept (two dimensional) skin tumor model homogeneously populated by MNP-QD nanohybrids. Our simulations reveal a novel near-PMR physical phenomenon observable under perpendicular illumination, which we like to call the margin pattern reversal, where the spatial absorption pattern reverses when the near-PMR QDs switch from the bright to dark state.
Collapse
Affiliation(s)
- Harini Hapuarachchi
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
8
|
Senevirathne V, Hapuarachchi H, Mallawaarachchi S, Gunapala SD, Stockman MI, Premaratne M. Scattering characteristics of an exciton-plasmon nanohybrid made by coupling a monolayer graphene nanoflake to a carbon nanotube. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:085302. [PMID: 30540985 DOI: 10.1088/1361-648x/aaf845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A hybrid nanostructure where a graphene nanoflake (GNF) is optically coupled to a carbon nanotube (CNT) could potentially possess enhanced sensing capabilities compared to the individual constituents whilst inheriting their high biocompatibility, favourable electrical, mechanical and spectroscopic properties. Therefore, in this paper, we investigate the scattering characteristics of an all-carbon exciton-plasmon nanohybrid which was made by coupling an elliptical GNF resonator to a semiconducting CNT gain element. We analytically model the nanohybrid as an open quantum system using cavity quantum electrodynamics. We derive analytical expressions for the dipole moment operator and the dipole response field of the GNF and characterize the Rayleigh scattering spectrum of the nanohybrid. These analytical expressions are valid for any arbitrary ellipsoidal nanoresonator coupled to a quantum emitter. Furthermore, we perform a detailed numerical analysis, the results of which indicate that the GNF-CNT nanohybrid exhibits enhanced and versatile scattering capabilities compared to the individual constituents. We show that the spectral signatures of the nanohybrid are highly tunable using a multitude of system parameters such as Fermi energy of the GNF, component dimensions, GNF-CNT separation distance and the permittivity of the submerging medium. We finally demonstrate the prospect of using the proposed nanohybrid to reconstruct the permittivity profile of a tumour. The high biocompatibility and high sensitivity to the dielectric properties of the environment make the proposed GNF-CNT nanohybrid an ideal candidate for such biosensing applications.
Collapse
Affiliation(s)
- Viraj Senevirathne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Song P, Wang JH, Zhang M, Yang F, Lu HJ, Kang B, Xu JJ, Chen HY. Three-level spaser for next-generation luminescent nanoprobe. SCIENCE ADVANCES 2018; 4:eaat0292. [PMID: 30128353 PMCID: PMC6097815 DOI: 10.1126/sciadv.aat0292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/11/2018] [Indexed: 05/14/2023]
Abstract
The development of modern biological and medical science highly depends on advanced luminescent probes. Current probes typically have wide emission spectra of 30 to 100 nm, which limits the number of resolvable colors that are simultaneously labeled on samples. Spasers, the abbreviation for surface plasmon lasers, have ultranarrow lasing spectra by stimulated light amplification in the plasmon nanocavity. However, high threshold (>102 mJ cm-2) and short lasing lifetime (approximately picoseconds to nanoseconds) still remain obstacles for current two-level spaser systems. We demonstrated a new type of a three-level spaser using triplet-state electrons. By prolonging the upper state lifetime and controlling the energy transfer, high gain compensation was generated. This probe, named delayed spasing dots (dsDs), about 50 to 60 nm in size, exhibited a spectral linewidth of ~3 nm, an ultralow threshold of ~1 mJ cm-2, and a delayed lasing lifetime of ~102 μs. As the first experimental realization of the three-level spaser system, our results suggested a general strategy to tune the spasing threshold and dynamics by engineering the energy level of the gain medium and the energy transfer process. These dsDs have the potential to become new-generation luminescent probes for super-multiplex biological analysis without disturbance from short lifetime background emission.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Kang
- Corresponding author. (B.K.); (J.-J.X.); (H.-Y.C.)
| | - Jing-Juan Xu
- Corresponding author. (B.K.); (J.-J.X.); (H.-Y.C.)
| | | |
Collapse
|
10
|
Zhang Z, Yang J, He X, Han Y, Zhang J, Huang J, Chen D, Xu S. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials. MATERIALS 2018; 11:ma11060941. [PMID: 29865283 PMCID: PMC6024905 DOI: 10.3390/ma11060941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/27/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022]
Abstract
As a plasmonic analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has drawn more attention due to its potential of realizing on-chip sensing, slow light and nonlinear effect enhancement. However, the performance of a plasmonic system is always limited by the metal ohmic loss. Here, we numerically report a PIT system with gain materials based on plasmonic metal-insulator-metal waveguide. The corresponding phenomenon can be theoretically analyzed by coupled mode theory (CMT). After filling gain material into a disk cavity, the system intrinsic loss can be compensated by external pump beam, and the PIT can be greatly fueled to achieve a dramatic enhancement of slow light performance. Finally, a double-channel enhanced slow light is introduced by adding a second gain disk cavity. This work paves way for a potential new high-performance slow light device, which can have significant applications for high-compact plasmonic circuits and optical communication.
Collapse
Affiliation(s)
- Zhaojian Zhang
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China.
| | - Junbo Yang
- Center of Material Science, National University of Defense Technology, Changsha 410073, China.
| | - Xin He
- Center of Material Science, National University of Defense Technology, Changsha 410073, China.
| | - Yunxin Han
- Center of Material Science, National University of Defense Technology, Changsha 410073, China.
| | - Jingjing Zhang
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China.
| | - Jie Huang
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China.
| | - Dingbo Chen
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China.
| | - Siyu Xu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China.
| |
Collapse
|