1
|
Kampaengsri S, Yong GY, Aryamueang S, Ouengwanarat B, Pewklang T, Chansaenpak K, Jitrapakdee S, Kue CS, Kamkaew A. Heptamethine cyanine-based polymeric nanoparticles for photothermal therapy in HCT116 human colon cancer model. Sci Rep 2025; 15:884. [PMID: 39762372 PMCID: PMC11704253 DOI: 10.1038/s41598-024-83249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
In this work, we synthesize a quinoline-based heptamethine cyanine, QuCy7, with sulfonate groups to enhance water solubility. This dye demonstrates exceptional near-infrared absorption beyond 750 nm, accompanied by photothermal properties but low photostability. Encapsulating QyCy7 with polyethylene glycol to form nanopolymer, QuCy7@mPEG NPs, addresses the issue of its photoinstability. TEM showed that QuCy7@mPEG NPs possess a spherical morphology, featuring a core-shell structure with a size of around 120 nm in diameter. Upon irradiation with an 808 nm laser for 10 min, a significant increase in temperature up to 24 °C can be achieved with a photothermal conversion (PTC) rate of approximately 35%. QuCy7@mPEG NPs exhibit remarkable photothermal stability as compared to QuCy7. The efficiency of QuCy7@mPEG NPs was demonstrated by the in vitro PTT studies. Finally, the nanoparticles' acute toxicity and effectiveness were assessed using the chick embryo model. The results provide compelling evidence that QuCy7@mPEG NPs are safe without inducing hemolysis, inhibit angiogenesis when exposed to light, and exhibit anti-tumor activity with a 76% reduction in tumor size compared to QuCy7 (40%). Thus suggesting the sulfonate groups can enhance water solubility, and its nanopolymer is biocompatible and possesses superior anti-tumor efficacy.
Collapse
Affiliation(s)
- Sastiya Kampaengsri
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Gong Yi Yong
- School of Graduate Studies, Management and Science University, Seksyen 13, Shah Alam, 40100, Selangor, Malaysia
| | - Sirimongkon Aryamueang
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Bongkot Ouengwanarat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thitima Pewklang
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chin-Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia.
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Santhosh PB, Hristova-Panusheva K, Petrov T, Stoychev L, Krasteva N, Genova J. Femtosecond Laser-Induced Photothermal Effects of Ultrasmall Plasmonic Gold Nanoparticles on the Viability of Human Hepatocellular Carcinoma HepG2 Cells. Cells 2024; 13:2139. [PMID: 39768227 PMCID: PMC11675025 DOI: 10.3390/cells13242139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.2 ± 1.1 nm), induced by a 343 nm wavelength ultrafast femtosecond-pulse laser with a low intensity (0.1 W/cm2) for 5 and 10 min, on the cell morphology and viability of human hepatocellular carcinoma (HepG2) cells treated in vitro. The optical microscopy images showed considerable alteration in the overall morphology of the cells treated with AuNPs and irradiated with laser light. Infrared thermometer measurements showed that the temperature of the cell medium treated with AuNPs and exposed to the laser increased steadily from 22 °C to 46 °C and 48.5 °C after 5 and 10 min, respectively. The WST-1 assay results showed a significant reduction in cell viability, demonstrating a synergistic therapeutic effect of the femtosecond laser and AuNPs on HepG2 cells. The obtained results pave the way to design a less expensive, effective, and minimally invasive photothermal approach to treat cancers with reduced side effects.
Collapse
Affiliation(s)
- Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
- Central Laboratory of Solar Energy and New Energy Sources, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria (N.K.)
| | - Todor Petrov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
- Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 8, Kliment Ohridski St, 1000 Sofia, Bulgaria
| | - Lyubomir Stoychev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria (N.K.)
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
| |
Collapse
|
3
|
Karmakar A, Silswal A, Koner AL. Review of NIR-responsive ''Smart'' carriers for photothermal chemotherapy. J Mater Chem B 2024; 12:4785-4808. [PMID: 38690723 DOI: 10.1039/d3tb03004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review focuses on the versatile applications of near-infrared (NIR)-responsive smart carriers in biomedical applications, particularly drug delivery and photothermal chemotherapy. These carriers demonstrate multi-responsive theranostics capabilities, including pH-dependent drug release, targeted delivery of chemotherapeutics, heat-mediated drug release, and photothermal tumor damage. Biological samples are transparent to NIR light with a suitable wavelength, and therefore, NIR light is advantageous for deep-tissue penetration. It also generates sufficient heat in tissue samples, which is beneficial for on-demand NIR-responsive drug delivery in vivo systems. The development of biocompatible materials with sufficient NIR light absorption properties and drug-carrying functionality has shown tremendous growth in the last five years. Thus, this review offers insights into the current research development of NIR-responsive materials with therapeutic potential and prospects aimed at overcoming challenges to improve the therapeutic efficacy and safety in the dynamic field of NIR-responsive drug delivery.
Collapse
Affiliation(s)
- Abhijit Karmakar
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
4
|
Kildusiene I, Dulskas A, Smailyte G. Value of combined serum CEA, CA72-4, and CA19-9 marker detection in diagnosis of colorectal cancer. Tech Coloproctol 2024; 28:33. [PMID: 38358422 DOI: 10.1007/s10151-023-02873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/18/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND The aim of this study was to examine whether the combination of serum tumor markers (carcinoembryonic antigen [CEA], carbohydrate antigen [CA]72-4, CA19-9) improves sensitivity and accuracy in the diagnosis of colorectal cancer and precancerous lesion tubular adenoma. METHODS An automatic electrochemiluminescence immunoassay with matched kits (ECLIA) was performed on a Roche Cobas e411 analyzer to determine the levels of serum CEA, CA72-4, and CA19-9 in 35 patients with early colorectal cancer, 87 patients with tubular adenoma, and 58 healthy people undergoing colonoscopy after positive fecal immunochemical test (FIT) in a colorectal cancer screening program 2021 January to April. The values of these three tumor markers in the diagnosis of colorectal cancer and tubular adenoma were analyzed. RESULTS 180 patients (92 female and 88 male) were included into the study. We compared serum CEA, CA72-4 and CA19-9 markers among 3 groups: healthy people (mean age 64,0 ±8,6), patients with tubular adenoma (mean age 62,7 ± 6,4) and colorectal cancer (mean age 59,2 ±6,2). The levels of serum CEA, CA72-4, and CA19-9 were higher in the colorectal cancer group than in the tubular adenoma group and healthy subjects, and these differences were significant (p < 0.05). The combination of CEA, CA72-4, and CA19-9 had a higher diagnostic value for colorectal cancer compared to single markers, and the positive detection rate was 54.3%. The diagnostic power when using all three markers was the best, and applied for colorectal cancer and tubular adenoma. CONCLUSIONS The combination of CA72-4, CEA, and CA19-9 markers increases the sensitivity and accuracy in the diagnosis of colorectal cancer and can thus be considered an important tool for early colorectal diagnosis.
Collapse
Affiliation(s)
- I Kildusiene
- Life Sciences Centre, Vilnius University, 03101, Vilnius, Lithuania.
- Laboratory of Cancer Epidemiology, National Cancer Institute, Vilnius, Lithuania.
| | - A Dulskas
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Department of Abdominal and General Surgery and Oncology, National Cancer Institute, Vilnius, Lithuania
| | - G Smailyte
- Laboratory of Cancer Epidemiology, National Cancer Institute, Vilnius, Lithuania
- Institute of Health Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Farzam OR, Mehran N, Bilan F, Aghajani E, Dabbaghipour R, Shahgoli GA, Baradaran B. Nanoparticles for imaging-guided photothermal therapy of colorectal cancer. Heliyon 2023; 9:e21334. [PMID: 37920521 PMCID: PMC10618772 DOI: 10.1016/j.heliyon.2023.e21334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with a high mortality rate worldwide. While surgery, chemotherapy, and radiotherapy have shown some effectiveness in improving survival rates, they come with drawbacks such as side effects and harm to healthy tissues. The theranostic approach, which integrates the processes of cancer diagnosis and treatment, can minimize biological side effects. Photothermal therapy (PTT) is an emerging treatment method that usages light-sensitive agents to generate heat at the tumor site and induce thermal erosion. The development of nanotechnology for CRC treatment using imaging-guided PTT has garnered significant. Nanoparticles with suitable physical and chemical properties can enhance the efficiency of cancer diagnosis and PTT. This approach enables the monitoring of cancer treatment progress and safeguards healthy tissues. In this article, we concisely introduce the application of metal nanoparticles, polymeric nanoparticles, and carbon nanoparticles in imaging-guided PTT of colorectal cancer.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Mehran
- Clinical Research Development Unit, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Bilan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Aghajani
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Dabbaghipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Unit, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Singh AK, Malviya R, Prajapati B, Singh S, Yadav D, Kumar A. Nanotechnology-Aided Advancement in Combating the Cancer Metastasis. Pharmaceuticals (Basel) 2023; 16:899. [PMID: 37375846 PMCID: PMC10304141 DOI: 10.3390/ph16060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Modern medicine has been working to find a cure for cancer for almost a century, but thus far, they have not been very successful. Although cancer treatment has come a long way, more work has to be carried out to boost specificity and reduce systemic toxicity. The diagnostic industry is on the cusp of a technological revolution, and early diagnosis is essential for improving prognostic outlook and patient quality of life. In recent years, nanotechnology's use has expanded, demonstrating its efficacy in enhancing fields such as cancer treatment, radiation therapy, diagnostics, and imaging. Applications for nanomaterials are diverse, ranging from enhanced radiation adjuvants to more sensitive early detection instruments. Cancer, particularly when it has spread beyond the original site of cancer, is notoriously tough to combat. Many people die from metastatic cancer, which is why it remains a huge issue. Cancer cells go through a sequence of events known as the "metastatic cascade" throughout metastasis, which may be used to build anti-metastatic therapeutic techniques. Conventional treatments and diagnostics for metastasis have their drawbacks and hurdles that must be overcome. In this contribution, we explore in-depth the potential benefits that nanotechnology-aided methods might offer to the detection and treatment of metastatic illness, either alone or in conjunction with currently available conventional procedures. Anti-metastatic drugs, which can prevent or slow the spread of cancer throughout the body, can be more precisely targeted and developed with the help of nanotechnology. Furthermore, we talk about how nanotechnology is being applied to the treatment of patients with cancer metastases.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Arvind Kumar
- Chandigarh Engineering College, Jhanjeri, Mohali 140307, India;
| |
Collapse
|
7
|
Dev Tripathi A, Katiyar S, Mishra A. Glypican1: a potential cancer biomarker for nanotargeted therapy. Drug Discov Today 2023:103660. [PMID: 37301249 DOI: 10.1016/j.drudis.2023.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Glypicans (GPCs) are generally involved in cellular signaling, growth and proliferation. Previous studies reported their roles in cancer proliferation. GPC1 is a co-receptor for a variety of growth-related ligands, thereby stimulating the tumor microenvironment by promoting angiogenesis and epithelial-mesenchymal transition (EMT). This work reviews GPC1-biomarker-assisted drug discovery by the application of nanostructured materials, creating nanotheragnostics for targeted delivery and application in liquid biopsies. The review includes details of GPC1 as a potential biomarker in cancer progression as well as a potential candidate for nano-mediated drug discovery.
Collapse
Affiliation(s)
- Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
8
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
9
|
Liu X, Zhou W, Wang T, Miao S, Lan S, Wei Z, Meng Z, Dai Q, Fan H. Highly localized, efficient, and rapid photothermal therapy using gold nanobipyramids for liver cancer cells triggered by femtosecond laser. Sci Rep 2023; 13:3372. [PMID: 36849576 PMCID: PMC9970969 DOI: 10.1038/s41598-023-30526-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
In this study, the photothermal effect and up-conversion florescence imaging effect of gold nanobipyramids in liver cancer cells are investigated theoretically and experimentally to explore the photothermal ablation tumor therapy with higher photothermal conversion efficiency, shorter laser action time, smaller action range and lower laser power. The small-size gold nanobipyramids with good biocompatibility and infrared absorption peak located in the first biological window are synthesized. Femtosecond laser is focused on the nanobipyramids clusters in cells and the cells die after being irradiated for 20 s at a power as low as 3 mW. In contrast, the control cells die after irradiation with 30 mW laser for 3 min. The theoretical simulation results show that: under femtosecond laser irradiation, the local thermal effect of gold nanoclusters is produced in the range of hundreds of square nanometers and the temperature rises by 516 °C in 106 picoseconds. This therapy reduces the treatment time to seconds level, and the treatment range to square micrometer level, the power to milliwatt level. In this treatment, cells die by apoptosis rather than necrosis, which reduces inflammation. This result opens up a new way to develop photothermal ablation therapy with less side effects and more minimally invasive.
Collapse
Affiliation(s)
- Xiao Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Wei Zhou
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Tianjun Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Sen Miao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhongchao Wei
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhao Meng
- Guangdong Women and Children Hospital, Guangzhou, 51000, China
| | - Qiaofeng Dai
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China.
| | - Haihua Fan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Freitas SC, Sanderson D, Caspani S, Magalhães R, Cortés-Llanos B, Granja A, Reis S, Belo JH, Azevedo J, Gómez-Gaviro MV, de Sousa CT. New Frontiers in Colorectal Cancer Treatment Combining Nanotechnology with Photo- and Radiotherapy. Cancers (Basel) 2023; 15:383. [PMID: 36672333 PMCID: PMC9856291 DOI: 10.3390/cancers15020383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Despite recent advances in the treatment of this pathology, which include a personalized approach using radio- and chemotherapies in combination with advanced surgical techniques, it is imperative to enhance the performance of these treatments and decrease their detrimental side effects on patients' health. Nanomedicine is likely the pathway towards solving this challenge by enhancing both the therapeutic and diagnostic capabilities. In particular, plasmonic nanoparticles show remarkable potential due to their dual therapeutic functionalities as photothermal therapy agents and as radiosensitizers in radiotherapy. Their dual functionality, high biocompatibility, easy functionalization, and targeting capabilities make them potential agents for inducing efficient cancer cell death with minimal side effects. This review aims to identify the main challenges in the diagnosis and treatment of colorectal cancer. The heterogeneous nature of this cancer is also discussed from a single-cell point of view. The most relevant works in photo- and radiotherapy using nanotechnology-based therapies for colorectal cancer are addressed, ranging from in vitro studies (2D and 3D cell cultures) to in vivo studies and clinical trials. Although the results using nanoparticles as a photo- and radiosensitizers in photo- and radiotherapy are promising, preliminary studies showed that the possibility of combining both therapies must be explored to improve the treatment efficiency.
Collapse
Affiliation(s)
- Sara C. Freitas
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Sofia Caspani
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ricardo Magalhães
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Horta Belo
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Azevedo
- Colorectal Surgery—Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisboa, Portugal
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Célia Tavares de Sousa
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
11
|
Sharma G, Razeghi Kondelaji MH, Sharma GP, Hansen C, Parchur AK, Shafiee S, Jagtap JM, Fish B, Bergom C, Paulson E, Hall WA, Himburg HA, Joshi A. X-ray and MR Contrast Bearing Nanoparticles Enhance the Therapeutic Response of Image-Guided Radiation Therapy for Oral Cancer. Technol Cancer Res Treat 2023; 22:15330338231189593. [PMID: 37469184 PMCID: PMC10363893 DOI: 10.1177/15330338231189593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Radiation therapy for head and neck squamous cell carcinoma is constrained by radiotoxicity to normal tissue. We demonstrate 100 nm theranostic nanoparticles for image-guided radiation therapy planning and enhancement in rat head and neck squamous cell carcinoma models. METHODS PEG conjugated theranostic nanoparticles comprising of Au nanorods coated with Gadolinium oxide layers were tested for radiation therapy enhancement in 2D cultures of OSC-19-GFP-luc cells, and orthotopic tongue xenografts in male immunocompromised Salt sensitive or SS rats via both intratumoral and intravenous delivery. The radiation therapy enhancement mechanism was investigated. RESULTS Theranostic nanoparticles demonstrated both X-ray/magnetic resonance contrast in a dose-dependent manner. Magnetic resonance images depicted optimal tumor-to-background uptake at 4 h post injection. Theranostic nanoparticle + Radiation treated rats experienced reduced tumor growth compared to controls, and reduction in lung metastasis. CONCLUSIONS Theranostic nanoparticles enable preprocedure radiotherapy planning, as well as enhance radiation treatment efficacy for head and neck tumors.
Collapse
Affiliation(s)
- Gayatri Sharma
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | - Guru P. Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher Hansen
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul K. Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shayan Shafiee
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Brian Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University, St Louis, MO, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Dnyanesh Saindane
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Bhupendra G. Prajapati
- Dept. of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K.Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, India
| |
Collapse
|
13
|
Zhu HQ, Wang DY, Xu LS, Chen JL, Chu EW, Zhou CJ. Diagnostic value of an enhanced MRI combined with serum CEA, CA19-9, CA125 and CA72-4 in the liver metastasis of colorectal cancer. World J Surg Oncol 2022; 20:401. [PMID: 36529741 PMCID: PMC9762109 DOI: 10.1186/s12957-022-02874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE This paper aims to explore the diagnostic value of enhanced magnetic resonance imaging (MRI) combined with a carcinoembryonic antigen (CEA) and carbohydrate antigen in terms of the liver metastasis of colorectal cancer. METHODS A total of 167 colorectal cancer patients with liver metastasis and 167 colorectal cancer patients without liver metastasis were selected as the subjects. An automatic electrochemiluminescence analyser was then used to detect the tumour markers CEA, CA19-9, CA125 and CA72-4. The consistency between the MRI examination and clinical pathological examination was also analysed, and the sensitivity, specificity and positive and negative predictive values of various combined detection methods were compared. RESULTS The abnormal rates of CEA, CA19-9, CA125 and CA72-4 in the two groups were statistically significant (P < 0.05), while the results of the enhanced MRI and clinicopathological examination for liver metastasis in patients with colon cancer were largely consistent (Kappa coefficient = 0.788, P < 0.000). However, the two methods were inconsistent. The false positive rate of the enhanced MRI examination was 15.3%, while the false negative rate was 6.0%. The specificity (94.61%), positive predictive value (92.68%) and positive likelihood ratio (12.67%) were the highest for the MRI combined with serial CEA, while the sensitivity (98.80%) and negative predictive value (97.22%) were the highest with the MRI combined with parallel CEA, and this combination returned the lowest negative likelihood ratio (0.03). CONCLUSION The combination of MRI and CEA excludes non-metastatic patients and identifies colorectal liver metastasis cancer patients. Overall, it has a higher diagnostic value.
Collapse
Affiliation(s)
- Hua-Qiang Zhu
- Department of Medical Imaging, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), No. 4253 of Pine White Rd, Guangming District, Shenzhen, 518106, Guangdong Province, China.
| | - Dong-Ye Wang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong Province, China
| | - Lin-Shen Xu
- Department of Medical Imaging, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), No. 4253 of Pine White Rd, Guangming District, Shenzhen, 518106, Guangdong Province, China
| | - Jian-le Chen
- Department of Medical Imaging, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), No. 4253 of Pine White Rd, Guangming District, Shenzhen, 518106, Guangdong Province, China
| | - Er-Wei Chu
- Department of Medical Imaging, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), No. 4253 of Pine White Rd, Guangming District, Shenzhen, 518106, Guangdong Province, China
| | - Cai-Jin Zhou
- Department of Medical Imaging, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), No. 4253 of Pine White Rd, Guangming District, Shenzhen, 518106, Guangdong Province, China
| |
Collapse
|
14
|
Xiong X, Wang L, He S, Guan S, Li D, Zhang M, Qu X. Vacancy defect-promoted nanomaterials for efficient phototherapy and phototherapy-based multimodal Synergistic Therapy. Front Bioeng Biotechnol 2022; 10:972837. [PMID: 36091444 PMCID: PMC9452887 DOI: 10.3389/fbioe.2022.972837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Phototherapy and multimodal synergistic phototherapy (including synergistic photothermal and photodynamic therapy as well as combined phototherapy and other therapies) are promising to achieve accurate diagnosis and efficient treatment for tumor, providing a novel opportunity to overcome cancer. Notably, various nanomaterials have made significant contributions to phototherapy through both improving therapeutic efficiency and reducing side effects. The most key factor affecting the performance of phototherapeutic nanomaterials is their microstructure which in principle determines their physicochemical properties and the resulting phototherapeutic efficiency. Vacancy defects ubiquitously existing in phototherapeutic nanomaterials have a great influence on their microstructure, and constructing and regulating vacancy defect in phototherapeutic nanomaterials is an essential and effective strategy for modulating their microstructure and improving their phototherapeutic efficacy. Thus, this inspires growing research interest in vacancy engineering strategies and vacancy-engineered nanomaterials for phototherapy. In this review, we summarize the understanding, construction, and application of vacancy defects in phototherapeutic nanomaterials. Starting from the perspective of defect chemistry and engineering, we also review the types, structural features, and properties of vacancy defects in phototherapeutic nanomaterials. Finally, we focus on the representative vacancy defective nanomaterials recently developed through vacancy engineering for phototherapy, and discuss the significant influence and role of vacancy defects on phototherapy and multimodal synergistic phototherapy. Therefore, we sincerely hope that this review can provide a profound understanding and inspiration for the design of advanced phototherapeutic nanomaterials, and significantly promote the development of the efficient therapies against tumor.
Collapse
Affiliation(s)
- Xinyu Xiong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan He
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Dawei Li
- Senior Orthopeadics Department, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingming Zhang
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Xiaozhong Qu
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Henderson L, Neumann O, Kadria-Vili Y, Gerislioglu B, Bankson J, Nordlander P, Halas NJ. Plasmonic gadolinium oxide nanomatryoshkas: bifunctional magnetic resonance imaging enhancers for photothermal cancer therapy. PNAS NEXUS 2022; 1:pgac140. [PMID: 36714874 PMCID: PMC9802487 DOI: 10.1093/pnasnexus/pgac140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticle-assisted laser-induced photothermal therapy (PTT) is a promising method for cancer treatment; yet, visualization of nanoparticle uptake and photothermal response remain a critical challenge. Here, we report a magnetic resonance imaging-active nanomatryoshka (Gd2O3-NM), a multilayered (Au core/Gd2O3 shell/Au shell) sub-100 nm nanoparticle capable of combining T1 MRI contrast with PTT. This bifunctional nanoparticle demonstrates an r1 of 1.28 × 108 mM-1 s-1, an MRI contrast enhancement per nanoparticle sufficient for T1 imaging in addition to tumor ablation. Gd2O3-NM also shows excellent stability in an acidic environment, retaining 99% of the internal Gd(3). This report details the synthesis and characterization of a promising system for combined theranostic nanoparticle tracking and PTT.
Collapse
Affiliation(s)
- Luke Henderson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA,Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Oara Neumann
- Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA,Department of Electrical and Computer Engineering, Applied Physics Program, Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Yara Kadria-Vili
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA,Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, TX 77030, USA
| | - Burak Gerislioglu
- Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA,Department of Physics and Astronomy, Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - James Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, TX 77030, USA
| | - Peter Nordlander
- Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA,Department of Electrical and Computer Engineering, Applied Physics Program, Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA,Department of Physics and Astronomy, Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | | |
Collapse
|
16
|
Zhou R, Zhang M, Xi J, Li J, Ma R, Ren L, Bai Z, Qi K, Li X. Gold Nanorods-Based Photothermal Therapy: Interactions Between Biostructure, Nanomaterial, and Near-Infrared Irradiation. NANOSCALE RESEARCH LETTERS 2022; 17:68. [PMID: 35882718 PMCID: PMC9325935 DOI: 10.1186/s11671-022-03706-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/21/2022] [Indexed: 05/28/2023]
Abstract
Gold nanorods (AuNRs) are ideal inorganic nanophotothermal agents with unique characteristics, including local surface plasmon resonance effects, easy scale preparation and functional modification, and good biocompatibility. This review summarizes several recent advances in AuNRs-based photothermal therapy (PTT) research. Functionalized AuNRs photothermal agents have optimized biocompatibility and targeting properties. The multifunctional AuNRs nanoplatform composite structure meets the requirements for synergistic effects of PTT, photoacoustic imaging, and other therapeutic methods. Photothermal therapy with AuNRs (AuNRs-PTT) is widely used to treat tumors and inflammatory diseases; its tumor-targeting, tumor metastasis inhibition, and photothermal tumor ablation abilities have remarkable curative effects. An in-depth study of AuNRs in living systems and the interactions between biological structure, nanomaterial, and near-infrared irradiation could lay the foundation for further clinical research and the broad application of AuNRs in PTT.
Collapse
Affiliation(s)
- Ruili Zhou
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Meigui Zhang
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Jing Li
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Ruixia Ma
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Longfei Ren
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China
| | - Kuo Qi
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China.
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
17
|
Qi Y, Yu Z, Hu K, Wang D, Zhou T, Rao W. Rigid metal/liquid metal nanoparticles: Synthesis and application for locally ablative therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102535. [PMID: 35181527 DOI: 10.1016/j.nano.2022.102535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
Locally ablative therapy, as the main therapy for advanced tumors, has fallen into a bottleneck in recent years. The breakthrough of metal nanoparticles provides a novel approach for ablative therapy. Previous studies have mostly focused on the combined field of rigid metal nanoparticles and ablation. However, with the maturity of the preparation process of liquid metal nanoparticles, liquid metal nanoparticles not only have metallic properties but also have fluid properties, showing the potential to be combined with ablation. At present, there is no review on the combination of liquid metal nanoparticles and ablation. In this article, we first review the preparation, characterization and application characteristics of rigid metal and liquid metal nanoparticles in ablation applications, and then summarize the advantages, disadvantages and possible future development trends of rigid and liquid metal nanoparticles.
Collapse
Affiliation(s)
- Yuxia Qi
- Beijing University of Chinese Medicine, Beijing, China.
| | - Zhongyang Yu
- Beijing University of Chinese Medicine, Beijing, China.
| | - Kaiwen Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing,, China.
| | - Dawei Wang
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, China.
| | - Tian Zhou
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing,, China.
| | - Wei Rao
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, China.
| |
Collapse
|
18
|
Engineering Gold Nanostructures for Cancer Treatment: Spherical Nanoparticles, Nanorods, and Atomically Precise Nanoclusters. NANOMATERIALS 2022; 12:nano12101738. [PMID: 35630959 PMCID: PMC9146553 DOI: 10.3390/nano12101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Cancer is a major global health issue and is a leading cause of mortality. It has been documented that various conventional treatments can be enhanced by incorporation with nanomaterials. Thanks to their rich optical properties, excellent biocompatibility, and tunable chemical reactivities, gold nanostructures have been gaining more and more research attention for cancer treatment in recent decades. In this review, we first summarize the recent progress in employing three typical gold nanostructures, namely spherical Au nanoparticles, Au nanorods, and atomically precise Au nanoclusters, for cancer diagnostics and therapeutics. Following that, the challenges and the future perspectives of this field are discussed. Finally, a brief conclusion is summarized at the end.
Collapse
|
19
|
Avula LR, Grodzinski P. Nanotechnology-aided advancement in the combating of cancer metastasis. Cancer Metastasis Rev 2022; 41:383-404. [PMID: 35366154 PMCID: PMC8975728 DOI: 10.1007/s10555-022-10025-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 02/03/2023]
Abstract
Cancer, especially when it has metastasized to different locations in the body, is notoriously difficult to treat. Metastatic cancer accounts for most cancer deaths and thus remains an enormous challenge. During the metastasis process, cancer cells negotiate a series of steps termed the “metastatic cascadeˮ that offer potential for developing anti-metastatic therapy strategies. Currently available conventional treatment and diagnostic methods addressing metastasis come with their own pitfalls and roadblocks. In this contribution, we comprehensively discuss the potential improvements that nanotechnology-aided approaches are able to bring, either alone or in combination with the existing conventional techniques, to the identification and treatment of metastatic disease. We tie specific nanotechnology-aided strategies to the complex biology of the different steps of the metastatic cascade in order to open up new avenues for fine-tuned targeting and development of anti-metastatic agents designed specifically to prevent or mitigate the metastatic outgrowth of cancer. We also present a viewpoint on the progress of translation of nanotechnology into cancer metastasis patient care.
Collapse
Affiliation(s)
- Leela Rani Avula
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
20
|
Chen M, Juengpanich S, Li S, Topatana W, Lu Z, Zheng Q, Cao J, Hu J, Chan E, Hou L, Chen J, Chen F, Liu Y, Jiansirisomboon S, Gu Z, Tongpeng S, Cai X. Bortezomib-Encapsulated Dual Responsive Copolymeric Nanoparticles for Gallbladder Cancer Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103895. [PMID: 35068071 PMCID: PMC8895115 DOI: 10.1002/advs.202103895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/13/2021] [Indexed: 05/09/2023]
Abstract
Gallbladder cancer (GBC) is a rare but the most malignant type of biliary tract tumor. It is usually diagnosed at an advanced stage and conventional treatments are unsatisfactory. As a proteasome inhibitor, bortezomib (BTZ) exhibits excellent antitumor ability in GBC. However, the long-term treatment efficacy is limited by its resistance, poor stability, and high toxicity. Herein, BTZ-encapsulated pH-responsive copolymeric nanoparticles with estrone (ES-NP(BTZ; Ce6) ) for GBC-specific targeted therapy is reported. Due to the high estrogen receptor expression in GBC, ES-NP(BTZ; Ce6) can rapidly enter the cells and accumulate near the nucleus via ES-mediated endocytosis. Under acidic tumor microenvironment (TME) and 808 nm laser irradiation, BTZ is released and ROS is generated by Ce6 to destroy the "bounce-back" response pathway proteins, such as DDI2 and p97, which can effectively inhibit proteasomes and increase apoptosis. Compared to the traditional treatment using BTZ monotherapy, ES-NP(BTZ; Ce6) can significantly impede disease progression at lower BTZ concentrations and improve its resistance. Moreover, ES-NP(BTZ; Ce6) demonstrates similar antitumor abilities in patient-derived xenograft animal models and five other types of solid tumor cells, revealing its potential as a broad-spectrum antitumor formulation.
Collapse
Affiliation(s)
- Mingyu Chen
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
- School of MedicineZhejiang UniversityHangzhou310058China
| | - Sarun Juengpanich
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
- School of MedicineZhejiang UniversityHangzhou310058China
| | - Shijie Li
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
- School of MedicineZhejiang UniversityHangzhou310058China
| | - Win Topatana
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
- School of MedicineZhejiang UniversityHangzhou310058China
| | - Ziyi Lu
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Qiang Zheng
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Jiasheng Cao
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Jiahao Hu
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Esther Chan
- School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore637371Singapore
| | - Lidan Hou
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Jiang Chen
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Fang Chen
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Yu Liu
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Sukanda Jiansirisomboon
- School of Ceramic EngineeringInstitute of EngineeringSuranaree University of TechnologyNakhon Ratchasima30000Thailand
| | - Zhen Gu
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Suparat Tongpeng
- School of Ceramic EngineeringInstitute of EngineeringSuranaree University of TechnologyNakhon Ratchasima30000Thailand
| | - Xiujun Cai
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang UniversityHangzhou310016China
- School of MedicineZhejiang UniversityHangzhou310058China
| |
Collapse
|
21
|
Wang D, Bi X, Ji L, Fan Y, Wang H, Zhang J. Enhancing the antibacterial activity of near-infrared light-triggered photothermal therapy using hybrid Au/ZnSe nanodumbbells. NEW J CHEM 2022. [DOI: 10.1039/d2nj03142f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid plasmonic Au/ZnSe nanodumbbell heterostructures prevent the contact of hot electrons with the surrounding medium, resulting in higher PT conversion efficiency.
Collapse
Affiliation(s)
- Dong Wang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xinze Bi
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Lei Ji
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yu Fan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Hongzhi Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
22
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
23
|
Abstract
Cancer nanotheranostics aims at providing alternative approaches to traditional cancer diagnostics and therapies. In this context, plasmonic nanostructures especially gold nanostructures are intensely explored due to their tunable shape, size and surface plasmon resonance (SPR), better photothermal therapy (PTT) and photodynamic therapy (PDT) ability, effective contrast enhancing ability in Magnetic Resonance imaging (MRI) and Computed Tomography (CT) scan. Despite rapid breakthroughs in gold nanostructures based theranostics of cancer, the translation of gold nanostructures from bench side to human applications is still questionable. The major obstacles that have been facing by nanotheranostics are specific targeting, poor resolution and photoinstability during PTT etc. In this regard, various encouraging studies have been carried out recently to overcome few of these obstacles. Use of gold nanocomposites also overcomes the limitations of gold nanostructure probes and emerged as good nanotheranostic probe. Hence, the present article discusses the advances in gold nanostructures based cancer theranostics and mainly emphasizes on the importance of gold nanocomposites which have been designed to decipher the past questions and limitations of in vivo gold nanotheranostics.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| |
Collapse
|
24
|
Kayani Z, Islami N, Behzadpour N, Zahraie N, Imanlou S, Tamaddon P, Salehi F, Daneshvar F, Perota G, Sorati E, Mohammadi S, Sattarahmady N. Combating cancer by utilizing noble metallic nanostructures in combination with laser photothermal and X-ray radiotherapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Yue Y, Li F, Li Y, Wang Y, Guo X, Cheng Z, Li N, Ma X, Nie G, Zhao X. Biomimetic Nanoparticles Carrying a Repolarization Agent of Tumor-Associated Macrophages for Remodeling of the Inflammatory Microenvironment Following Photothermal Therapy. ACS NANO 2021; 15:15166-15179. [PMID: 34469109 DOI: 10.1021/acsnano.1c05618] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complete regression of residual tumors after photothermal therapy (PTT) depends on the activation and recognition of the immune system. However, the inevitable local inflammation after PTT in residual tumor recruits abundant abnormal immune cells, especially the tumor-associated macrophages (TAMs) which further promote immune escape and survival of the remaining tumor cells, resulting in the tumor recurrence and progression. To solve this problem, herein we explored biomimetic nanoparticles carrying repolarization agent of TAMs to remodel the post-PTT inflammatory microenvironment. The polydopamine nanoparticles were used simultaneously as photothermal transduction agents to ablate tumor cells and the delivery vehicles for TMP195 which can repolarize the M2-like TAMs into an antitumor phenotype. In addition, a biomimetic decoration of macrophage membrane coating was designed to endow nanoparticles the ability to actively target the tumor site after PTT mediated by inflammation-mediated chemotaxis. In the breast tumor model, these biomimetic nanoparticles with immune-modulating ability significantly elevated the levels of M1-like TAMs, ultimately resulting in a tumor-elimination rate of 60%, increased from 10% after PTT. This synergistic treatment strategy of PTT and TAMs repolarization provides a promising approach to address the deteriorated tumor microenvironment after PTT and proposes a more effective way for combinational treatment option in clinic.
Collapse
Affiliation(s)
- Yale Yue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, No.11 Zhongguancun Beiyitiao, Beijing 100190, China
- Henan Institute of Advanced Technology, Henan 450003, China
| | - Fenfen Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, No.11 Zhongguancun Beiyitiao, Beijing 100190, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, No.11 Zhongguancun Beiyitiao, Beijing 100190, China
| | - Yazhou Wang
- The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Xinjing Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, No.11 Zhongguancun Beiyitiao, Beijing 100190, China
| | - Zhaoxia Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, No.11 Zhongguancun Beiyitiao, Beijing 100190, China
| | - Nan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, No.11 Zhongguancun Beiyitiao, Beijing 100190, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, No.11 Zhongguancun Beiyitiao, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, No.11 Zhongguancun Beiyitiao, Beijing 100190, China
- Henan Institute of Advanced Technology, Henan 450003, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, No.11 Zhongguancun Beiyitiao, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Rizwan Younis M, He G, Gurram B, Lin J, Huang P. Recent Advances in Gold Nanorods‐Based Cancer Theranostics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Gang He
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Bhaskar Gurram
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| |
Collapse
|
27
|
Khan NU, Lin J, Younas MR, Liu X, Shen L. Synthesis of gold nanorods and their performance in the field of cancer cell imaging and photothermal therapy. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00092-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractCancer is one of the most common incident in the world, with malignant tumors having a death rate of up to 19%. A new method of treating cancer cells effectively with minimal cytotoxicity is needed. In the field of biomedicine with unique shape-dependent optical properties, gold nanorods (GNRs) have attracted worldwide interest. These nanorods have two distinct plasmon bands. One is transverse plasmon band in the area of visible light, and the other is longitudinal band of plasmons in near infrared region. These specific characters provide promise for the design of new optically active reagents that simultaneously perform light-mediated imaging and photothermal cancer treatment. We begin our review by summarizing the latest developments in gold nanorods synthesis with a focus on seed-mediated growth method. Nanorods spontaneous self-assembly, polymer-based alignment and its applications as a novel agent for simultaneous bioimaging and photothermal cancer therapy are listed in particular.
Collapse
|
28
|
Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021; 26:3085. [PMID: 34064173 PMCID: PMC8196792 DOI: 10.3390/molecules26113085] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Paola Varvarà
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
- Advanced Technologies Network Center, University of Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
29
|
Chen K, Li Q, Zhao X, Zhang J, Ma H, Sun X, Yu Q, Zhang Y, Fang C, Nie L. Biocompatible melanin based theranostic agent for in vivo detection and ablation of orthotopic micro-hepatocellular carcinoma. Biomater Sci 2021; 8:4322-4333. [PMID: 32602480 DOI: 10.1039/d0bm00825g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Early diagnosis and therapy of hepatocellular carcinoma (HCC) is critical to improve the five-year survival rates of patients. Theranostic agents synergized with photothermal ablation are expected to realize the early detection and treatment of orthotopic HCC. However, conventional metallic nanoagents are limited by their potential bio-toxicity to surrounding normal organs. Recently, endogenous biological melanin pigments have been utilized to develop nanoplatforms due to their excellent biocompatibility and degradability. Whereas, the insufficient capability of PEGylated melanin nanoparticles (PEG-MNPs) in photoacoustic (PA) imaging limits their further biomedical applications. Paradoxically, it is difficult to meet these two different requirements. Herein, a multifunctional nanoagent based on melanin (MNPs) conjugating the near-infrared (NIR) dye IR820 was successfully designed and fabricated. Encapsulation by polyethylene glycol (PEG) renders the solubility in water and allows the physical absorption of IR820 for enhanced photoacoustic (PA) performance and photothermal therapy. Besides, PEG coating on the surface of IR820-PEG-MNPs resulted in a reduction in swallowing in the reticuloendothelial system of the liver and spleen, prolonging the circulation time in the blood and increasing the accumulation in the tumor. The IR820-PEG-MNPs displayed satisfactory PA and T1-weighted magnetic resonance imaging (MRI) signals in aqueous solution as well as strong photothermal efficiency. Compared with prior injection, PA/MR signals of the tumor region were enhanced by 4.13- and 1.60-fold, respectively, which could effectively detect lesions smaller than ∼1.8 mm. Furthermore, the high photothermal conversion efficiency (40.2%) endowed the IR820-PEG-MNPs with the capability of selectively ablating tumors in orthotopic HCC mouse models under the guidance of PA/MR imaging. This work broadens the biomedical applications of melanin-based agent, which are promising for the precise diagnosis of orthotopic micro HCC and imaging guided photothermal ablation.
Collapse
Affiliation(s)
- Kang Chen
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Qiaolin Li
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Xingyang Zhao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Jinde Zhang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Haosong Ma
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Xiang Sun
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Qian Yu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Yueming Zhang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
30
|
Liu CH, Grodzinski P. Nanotechnology for Cancer Imaging: Advances, Challenges, and Clinical Opportunities. Radiol Imaging Cancer 2021; 3:e200052. [PMID: 34047667 PMCID: PMC8183257 DOI: 10.1148/rycan.2021200052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Nanoparticle (NP) imaging applications have the potential to improve cancer diagnostics, therapeutics, and treatment management. In biomedical research and clinical practice, NPs can serve as labels or labeled carriers for monitoring drug delivery or serve as imaging agents for enhanced imaging contrast, as well as providing improved signal sensitivity and specificity for in vivo imaging of molecular and cellular processes. These qualities offer exciting opportunities for NP-based imaging agents to address current limitations in oncologic imaging. Despite substantial advancements in NP design and development, very few NP-based imaging agents have translated into clinics within the past 5 years. This review highlights some promising NP-enabled imaging techniques and their potential to address current clinical cancer imaging limitations. Although most examples provided herein are from the preclinical space, discussed imaging solutions could offer unique in vivo tools to solve biologic questions, improve cancer treatment effectiveness, and inspire clinical translation innovation to improve patient care. Keywords: Molecular Imaging-Cancer, Molecular Imaging-Nanoparticles, Molecular Imaging-Optical Imaging, Metastases, Oncology, Surgery, Treatment Effects.
Collapse
Affiliation(s)
- Christina H. Liu
- From the Cancer Imaging Program, National Cancer Institute, National
Institutes of Health, 9609 Medical Center Dr, Room 4W216, Rockville, MD
20850
| | - Piotr Grodzinski
- From the Cancer Imaging Program, National Cancer Institute, National
Institutes of Health, 9609 Medical Center Dr, Room 4W216, Rockville, MD
20850
| |
Collapse
|
31
|
Thorat ND, Dworniczek E, Brennan G, Chodaczek G, Mouras R, Gascón Pérez V, Silien C, Tofail SAM, Bauer J. Photo-responsive functional gold nanocapsules for inactivation of community-acquired, highly virulent, multidrug-resistant MRSA. J Mater Chem B 2021; 9:846-856. [PMID: 33367418 DOI: 10.1039/d0tb02047h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indiscriminate and sporadic use of antibiotics has contributed to the emergence of drug resistance phenomenon in bacteria including but not limited to Staphylococcus aureus. These drug-resistant bacteria have been threatening safety in hospitals and adversely affecting human health. Here we report a strategy to design photo-stimulated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus (MRSA) "superbug" USA300. The nanocapsule probe is based on gold nanorods (GNRs) coated with pegylated thiol, mPEG-SH, which has been further modified by adding successively a natural antibacterial compound such as curcumin, and a cell targeting deoxyribonucleic acid (DNA) aptamer. We have used this novel gold nanocapsules for near-infrared (NIR) photophysical stimulation against pathogenic bacteria. We have found that the novel nanocapsule blocks biofilm formation and kills bacteria by photothermal action that causes disruption of the bacterial cell wall and membrane. In this approach, multiple drug-resistant Staphylococcus aureus has been captured by these nanocapsules through DNA aptamer targeting. All of the trapped bacteria could be killed in 30 minutes during the NIR stimulation due to the combination of photothermal effect, the generation of reactive oxygen species (ROS) and a loss of transmembrane potential (Δψ). Importantly we did not notice any resistance developed against the photothermal treatment. This is remarkable from an anti-biofilm activity point of view. Importantly, these multifunctional nanocapsules have also shown a surface enhanced Raman spectroscopy (SERS) effect, which could be used to evaluate the success of the inactivation effect during treatment. These results indicate that nanocapsule-based photo treatment can be an alternative antibacterial strategy without contributing to antibiotic resistance, and thus can be used for both environmental and therapeutic applications.
Collapse
Affiliation(s)
- Nanasaheb D Thorat
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cao Y, Ouyang B, Yang X, Jiang Q, Yu L, Shen S, Ding J, Yang W. Fixed-point "blasting" triggered by second near-infrared window light for augmented interventional photothermal therapy. Biomater Sci 2021; 8:2955-2965. [PMID: 32323670 DOI: 10.1039/d0bm00372g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the major limitations of current cancer therapy is the inability to destroy tumors with high efficacy and minimal invasiveness. Herein, we developed a proof-of-concept fixed-point "blasting" strategy to destroy the "castle" of tumors and realized efficient interventional photothermal therapy. The "blasting" materials were composed of photothermal nanoparticles (ancient ink nanoparticles, AINP) and a low boiling point phase change agent (perfluoromethylcyclopentane, FMCP). An injectable in situ-forming thermal-responsive hydrogel composed of biodegradable and biocompatible polymers was employed as a carrier to load the AINP and FMCP. The obtained hydrogel system was a flowable aqueous solution at low or room temperature for facile injection; meanwhile, once administered, it rapidly transformed into a fixed gel at a body temperature of about 37 °C. This unique property could effectually fix the AINP and FMCP and thus restrict the destruction region inside the tumor. Subsequently, triggered by second window near-infrared light, the solid tumors were effectively destroyed by a mild photothermal effect and the subsequent gas mechanical damage. We envisage that this fixed-point "blasting" strategy will pave a new way for the next generation of cancer-interventional photothermal therapy.
Collapse
Affiliation(s)
- Yongbin Cao
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200438, PR China.
| | - Boshu Ouyang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China. and Central Laboratory, First Affiliated Hospital, Institute (college) of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200438, PR China.
| | - Qin Jiang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200438, PR China.
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200438, PR China.
| | - Shun Shen
- The Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200438, PR China.
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200438, PR China.
| |
Collapse
|
33
|
Zhao Y, Meng L, Zhang K, Sun Y, Zhao Y, Yang Z, Lin Y, Liu X, Sun H, Yang B, Lin Q. Ultra-small nanodots coated with oligopeptides providing highly negative charges to enhance osteogenic differentiation of hBMSCs better than osteogenic induction medium. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Shakeri-Zadeh A, Zareyi H, Sheervalilou R, Laurent S, Ghaznavi H, Samadian H. Gold nanoparticle-mediated bubbles in cancer nanotechnology. J Control Release 2020; 330:49-60. [PMID: 33340564 DOI: 10.1016/j.jconrel.2020.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023]
Abstract
Microbubbles (MBs) have been extensively investigated in the field of biomedicine for the past few decades. Ultrasound and laser are the most frequently used sources of energy to produce MBs. Traditional acoustic methods induce MBs with poor localized areas of action. A high energy level is required to generate MBs through the focused continuous laser, which can be harmful to healthy tissues. As an alternative, plasmonic light-responsive nanoparticles, such as gold nanoparticles (AuNPs), are preferably used with continuous laser to decrease the energy threshold and reduce the bubbles area of action. It is also well-known that the utilization of the pulsed lasers instead of the continuous lasers decreases the needed AuNPs doses as well as laser power threshold. When well-confined bubbles are generated in biological environments, they play their own unique mechanical and optical roles. The collapse of a bubble can mechanically affect its surrounding area. Such a capability can be used for cargo delivery to cancer cells and cell surgery, destruction, and transfection. Moreover, the excellent ability of light scattering makes the bubbles suitable for cancer imaging. This review firstly provides an overview of the fundamental aspects of AuNPs-mediated bubbles and then their emerging applications in the field of cancer nanotechnology will be reviewed. Although the pre-clinical studies on the AuNP-mediated bubbles have shown promising data, it seems that this technique would not be applicable to every kind of cancer. The clinical application of this technique may basically be limited to the good accessible lesions like the superficial, intracavity and intraluminal tumors. The other essential challenges against the clinical translation of AuNP-mediated bubbles are also discussed.
Collapse
Affiliation(s)
- Ali Shakeri-Zadeh
- Finetech in Medicine Research Center, Iran University of Medical Science, Tehran, Iran
| | - Hajar Zareyi
- Department of Solid State, Faculty of Physics, K.N. Toosi University of Technology, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, University of Mons, Mons B-7000, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Gosselies 6041, Belgium
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran.
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
35
|
Yang S, Chen C, Qiu Y, Xu C, Yao J. Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials 2020; 268:120562. [PMID: 33278682 DOI: 10.1016/j.biomaterials.2020.120562] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022]
Abstract
Cancer phototherapy has attracted increasing attention for its promising effectiveness and relative non-invasiveness. Over the past years, tremendous efforts have been made to develop better phototherapy strategies with various nano delivery systems. This review introduces cancer phototherapy strategies based on tumor blood vessels for improved therapeutic outcomes from the angle of direct tumor destruction and improved delivery process assisted with nano delivery designs. Latest directions and ideas of cancer phototherapy with translation potential are also discussed. Focusing on the double role of tumor vessels not only as an anti-tumor target but also as part of the delivery process, we highlight the crosstalk between photo-induced extensive effects and the complicated drug delivery process. Due to the heterogeneity of tumors, deeper investigations about the interconnection between tumor vessels and cancer phototherapy remain to be carried out. More delicate and intelligent nano delivery systems are expected to help realize the full potential of this therapeutic strategy.
Collapse
Affiliation(s)
- Shan Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Chen Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yue Qiu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Cheng Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
36
|
Byun J, Kim D, Choi J, Shim G, Oh YK. Photosensitizer-Trapped Gold Nanocluster for Dual Light-Responsive Phototherapy. Biomedicines 2020; 8:E521. [PMID: 33233655 PMCID: PMC7699802 DOI: 10.3390/biomedicines8110521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Photoresponsive nanomaterials have recently received great attention in the field of cancer therapy. Here, we report a photosensitizer-trapped gold nanocluster that can facilitate dual light-responsive cancer therapy. We utilized methylene blue (MB) as a model photosensitizer, gold nanocluster as a model photothermal agent, and a polymerized DNA as the backbone of the nanocluster. We synthesized MB-intercalated gold DNA nanocluster (GMDN) via reduction and clustering of gold ions on a template consisting of MB-intercalated long DNA. Upon GMDN treatment, cancer cells revealed clear cellular uptake of MB and gold clusters; following dual light irradiation (660 nm/808 nm), the cells showed reactive oxygen species generation and increased temperature. Significantly higher cancer cell death was observed in cells treated with GMDN and dual irradiation compared with non-irradiated or single light-irradiated cells. Mice systemically injected with GMDN showed enhanced tumor accumulation compared to that of free MB and exhibited increased temperature upon near infrared irradiation of the tumor site. Tumor growth was almost completely inhibited in GMDN-treated tumor-bearing mice after dual light irradiation, and the survival rate of this group was 100% over more than 60 days. These findings suggest that GMDN could potentially function as an effective phototherapeutic for the treatment of cancer disease.
Collapse
Affiliation(s)
- Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.B.); (D.K.); (J.C.)
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.B.); (D.K.); (J.C.)
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.B.); (D.K.); (J.C.)
| | - Gayong Shim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.B.); (D.K.); (J.C.)
| |
Collapse
|
37
|
Gogineni VR, Maddirela DR, Park W, Jagtap JM, Parchur AK, Sharma G, Ibrahim ES, Joshi A, Larson AC, Kim DH, White SB. Localized and triggered release of oxaliplatin for the treatment of colorectal liver metastasis. J Cancer 2020; 11:6982-6991. [PMID: 33123288 PMCID: PMC7591990 DOI: 10.7150/jca.48528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose: The aim of this study was to develop and evaluate a liposome formulation that deliver oxaliplatin under magnetic field stimulus in high concentration to alleviate the off-target effects in a rat model of colorectal liver metastases (CRLM). Materials and Methods: Hybrid liposome-magnetic nanoparticles loaded with Cy5.5 dye and oxaliplatin (L-NIR- Fe3O4/OX) were synthesized by using thermal decomposition method. CRLM (CC-531) cell viability was assessed and rats orthotopically implanted with CC-531 cells were treated with L-NIR-Fe3O4/OX or by drug alone via different routes, up to 3 cycles of alternating magnetic field (AMF). Optical and MR imaging was performed to assess the targeted delivery. Biodistribution and histology was performed to determine the distribution of oxaliplatin. Results: L-NIR-Fe3O4/OX presented a significant increase of oxaliplatin release (~18%) and lower cell viability after AMF exposure (p<0.001). Optical imaging showed a significant release of oxaliplatin among mesenteric vein injected (MV) group of animals. MR imaging on MV injected animals showed R2* changes in the tumor regions at the same regions immediately after infusion compared to the surrounding liver (p<0.001). Biodistribution analysis showed significantly higher levels of oxaliplatin in liver tissues compared to lungs (p<0.001) and intestines (p<0.001) in the MV animals that received AMF after L-NIR- Fe3O4/OX administration. Large tumor necrotic zones and significant improvement in the survival rates were noted in the MV animals treated with AMF. Conclusion: AMF triggers site selective delivery of oxaliplatin at high concentrations and improves survival outcomes in colorectal liver metastasis tumor bearing rats.
Collapse
Affiliation(s)
- Venkateswara R Gogineni
- Departments of Radiology & Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Dilip R Maddirela
- Departments of Radiology & Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Wooram Park
- Department of Radiology, Northwestern University, Chicago, IL
| | - Jaidip M Jagtap
- Departments of Radiology & Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Abdul K Parchur
- Departments of Radiology & Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Gayatri Sharma
- Departments of Radiology & Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - El-Sayed Ibrahim
- Departments of Radiology & Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Amit Joshi
- Departments of Radiology & Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Andrew C Larson
- Department of Radiology, Northwestern University, Chicago, IL
| | - Dong-Hyun Kim
- Department of Radiology, Northwestern University, Chicago, IL
| | - Sarah B White
- Departments of Radiology & Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
38
|
Li Q, Chen K, Huang W, Ma H, Zhao X, Zhang J, Zhang Y, Fang C, Nie L. Minimally invasive photothermal ablation assisted by laparoscopy as an effective preoperative neoadjuvant treatment for orthotopic hepatocellular carcinoma. Cancer Lett 2020; 496:169-178. [PMID: 32987139 DOI: 10.1016/j.canlet.2020.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/23/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Nanoparticle-based photothermal ablation (PTA) has been intensively investigated recently. However, the poor biocompatibility of most PTA agents and potential long-term toxicity obstruct their clinical translation. Meanwhile, previous PTA studies are limited to surface tumors because of insufficient light penetration depth of near-infrared (NIR) light for deep abdominal tumors. Therefore, minimally invasive PTA combined with biocompatible agents may pave a promising way to treat deep orthotopic hepatocellular carcinoma (HCC). Herein, a multifunctional agent based on superparamagnetic iron oxide (SPIO) and new indocyanine green (IR820) was constructed with good biocompatibility. Outstanding fluorescence, photoacoustic and magnetic resonance imaging capabilities were observed in vitro. Additionally, in vivo results indicated that early-stage HCC (diameter less than 2 mm) could be effectively detected by this agent. Furthermore, for the first time, we developed minimally invasive laparoscopic-assisted photothermal ablation (L-A PTA) method coupled with this agent to completely ablate orthotopic HCC in nude mice model, neither recurrences nor obvious side effects were observed during the experiments. Remarkable shrinkage of primary tumor and disappearance of intrahepatic metastasis were also observed. In summary, minimally invasive L-A PTA is an effective preoperative neoadjuvant treatment for HCC.
Collapse
Affiliation(s)
- Qiaolin Li
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China; Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, PR China
| | - Kang Chen
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China; Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, PR China
| | - Wenchao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Haosong Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Xingyang Zhao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China; Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, PR China
| | - Jinde Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yueming Zhang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China; Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, PR China.
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
39
|
Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S. Role of gold nanoparticles in advanced biomedical applications. NANOSCALE ADVANCES 2020; 2:3764-3787. [PMID: 36132791 PMCID: PMC9419294 DOI: 10.1039/d0na00472c] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 05/20/2023]
Abstract
Gold nanoparticles (GNPs) have generated keen interest among researchers in recent years due to their excellent physicochemical properties. In general, GNPs are biocompatible, amenable to desired functionalization, non-corroding, and exhibit size and shape dependent optical and electronic properties. These excellent properties of GNPs exhibit their tremendous potential for use in diverse biomedical applications. Herein, we have evaluated the recent advancements of GNPs to highlight their exceptional potential in the biomedical field. Special focus has been given to emerging biomedical applications including bio-imaging, site specific drug/gene delivery, nano-sensing, diagnostics, photon induced therapeutics, and theranostics. We have also elaborated on the basics, presented a historical preview, and discussed the synthesis strategies, functionalization methods, stabilization techniques, and key properties of GNPs. Lastly, we have concluded this article with key findings and unaddressed challenges. Overall, this review is a complete package to understand the importance and achievements of GNPs in the biomedical field.
Collapse
Affiliation(s)
- Suneev Anil Bansal
- Department of Mechanical Engineering, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh India 160014
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University HP India 174103
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI) S. A. S. Nagar Punjab 140306 India
| | - Javad Karimi
- Department of Biology, Faculty of Sciences, Shiraz University Shiraz 71454 Iran
| | - Amrinder Pal Singh
- Department of Mechanical Engineering, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh India 160014
| | - Suresh Kumar
- Department of Applied Science, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh India 160014
| |
Collapse
|
40
|
Sim T, Lim C, Hoang NH, Shin Y, Kim JC, Park JY, Her J, Lee ES, Youn YS, Oh KT. An On-Demand pH-Sensitive Nanocluster for Cancer Treatment by Combining Photothermal Therapy and Chemotherapy. Pharmaceutics 2020; 12:E839. [PMID: 32887273 PMCID: PMC7558381 DOI: 10.3390/pharmaceutics12090839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Combination therapy is considered to be a promising strategy for improving the therapeutic efficiency of cancer treatment. In this study, an on-demand pH-sensitive nanocluster (NC) system was prepared by the encapsulation of gold nanorods (AuNR) and doxorubicin (DOX) by a pH-sensitive polymer, poly(aspartic acid-graft-imidazole)-PEG, to enhance the therapeutic effect of chemotherapy and photothermal therapy. At pH 6.5, the NC systems formed aggregated structures and released higher drug amounts while sustaining a stable nano-assembly, structured with less systemic toxicity at pH 7.4. The NC could also increase antitumor efficacy as a result of improved accumulation and release of DOX from the NC system at pHex and pHen with locally applied near-infrared light. Therefore, an NC system would be a potent strategy for on-demand combination treatment to target tumors with less systemic toxicity and an improved therapeutic effect.
Collapse
Affiliation(s)
- Taehoon Sim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Chaemin Lim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Ngoc Ha Hoang
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Yuseon Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Jae Chang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - June Yong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Jaewon Her
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea;
| | - Kyung Taek Oh
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| |
Collapse
|
41
|
Zeng Y, Li H, Li Z, Luo Q, Zhu H, Gu Z, Zhang H, Gong Q, Luo K. Engineered gadolinium-based nanomaterials as cancer imaging agents. APPLIED MATERIALS TODAY 2020; 20:100686. [DOI: 10.1016/j.apmt.2020.100686] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Dong L, Li W, Sun L, Yu L, Chen Y, Hong G. Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1663. [PMID: 32808464 DOI: 10.1002/wnan.1663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
Energy-converting biomaterials (ECBs)-mediated cancer-therapeutic modalities have been extensively explored, which have achieved remarkable benefits to overwhelm the obstacles of traditional cancer-treatment modalities. Energy-driven cancer-therapeutic modalities feature their distinctive merits, including noninvasiveness, low mammalian toxicity, adequate therapeutic outcome, and optimistical synergistic therapeutics. In this advanced review, the prevailing mainstream ECBs can be divided into two sections: Reactive oxygen species (ROS)-associated energy-converting biomaterials (ROS-ECBs) and hyperthermia-related energy-converting biomaterials (H-ECBs). On the one hand, ROS-ECBs can transfer exogenous or endogenous energy (such as light, radiation, ultrasound, or chemical) to generate and release highly toxic ROS for inducing tumor cell apoptosis/necrosis, including photo-driven ROS-ECBs for photodynamic therapy, radiation-driven ROS-ECBs for radiotherapy, ultrasound-driven ROS-ECBs for sonodynamic therapy, and chemical-driven ROS-ECBs for chemodynamic therapy. On the other hand, H-ECBs could translate the external energy (such as light and magnetic) into heat for killing tumor cells, including photo-converted H-ECBs for photothermal therapy and magnetic-converted H-ECBs for magnetic hyperthermia therapy. Additionally, the biosafety issues of ECBs are expounded preliminarily, guaranteeing the ever-stringent requirements of clinical translation. Finally, we discussed the prospects and facing challenges for constructing the new-generation ECBs for establishing intriguing energy-driven cancer-therapeutic modalities. This article is categorized under: Nanotechnology Approaches to Biology >Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lile Dong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Wenjuan Li
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Lining Sun
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, China
| | - Luodan Yu
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Guobin Hong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
43
|
Chen J, Zeng Z, Huang L, Luo S, Dong J, Zhou FH, Zhou K, Wang L, Kang L. Photothermal therapy technology of metastatic colorectal cancer. Am J Transl Res 2020; 12:3089-3115. [PMID: 32774688 PMCID: PMC7407689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies. The current treatments of metastatic colorectal cancer (mCRC) are ineffective and the bottleneck problem. It is of significance to explore effective new therapeutic strategies to eradicate mCRC. Photothermal therapy (PTT) is an emerging technology for tumor therapy, with the potential in the treatment of mCRC. In this review, the current treatment approaches to mCRC including surgery, radiotherapy, chemotherapy interventional therapy, biotherapy, and photothermal therapy are reviewed. In addition, we will focus on the various kinds of nanomaterials used in PTT for the treatment of CRC both in vitro and in vivo models. In conclusion, we will summarize the combined application of PTT with other theranostic methods, and propose future research directions of PTT in the treatment of CRC.
Collapse
Affiliation(s)
- Junji Chen
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
| | - Ziwei Zeng
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
| | - Liang Huang
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
| | - Shuangling Luo
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
| | - Jianghui Dong
- UniSA Clinical and Health Sciences, and UniSA Cancer Research Institute, University of South AustraliaAdelaide, SA 5001, Australia
| | - Fiona H Zhou
- School of Medicine, University of AdelaideAdelaide, SA 5000, Australia
| | - Kun Zhou
- UniSA Clinical and Health Sciences, and UniSA Cancer Research Institute, University of South AustraliaAdelaide, SA 5001, Australia
| | - Liping Wang
- UniSA Clinical and Health Sciences, and UniSA Cancer Research Institute, University of South AustraliaAdelaide, SA 5001, Australia
| | - Liang Kang
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
| |
Collapse
|
44
|
Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: Their role in hepatocellular carcinoma. Crit Rev Oncol Hematol 2020; 151:102968. [DOI: 10.1016/j.critrevonc.2020.102968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
|
45
|
Yang F, Zhao Z, Sun B, Chen Q, Sun J, He Z, Luo C. Nanotherapeutics for Antimetastatic Treatment. Trends Cancer 2020; 6:645-659. [PMID: 32448754 DOI: 10.1016/j.trecan.2020.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023]
Abstract
Tumor metastases, that is, the development of secondary tumors in organs distant from the primary tumor, and their treatment remain a serious problem in cancer therapy. The unique challenges for tracking and treating tumor metastases lie in the small size, high heterogeneity, and wide dispersion to distant organs of metastases. Recently, nanomedicines, with the capacity to precisely deliver therapeutic agents to both primary and secondary tumors, have demonstrated many potential benefits for metastatic cancer theranostics. Given the remarkable progression in emerging nanotherapeutics for antimetastatic treatment, it is timely to summarize the latest advances in this field. This review highlights the rationale, advantages, and challenges for integrating biomedical nanotechnology with cancer biology to develop antimetastatic nanotherapeutics.
Collapse
Affiliation(s)
- Fujun Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
46
|
Nasseri B, Turk M, Kosemehmetoglu K, Kaya M, Piskin E, Rabiee N, Webster TJ. The Pimpled Gold Nanosphere: A Superior Candidate for Plasmonic Photothermal Therapy. Int J Nanomedicine 2020; 15:2903-2920. [PMID: 32425523 PMCID: PMC7188077 DOI: 10.2147/ijn.s248327] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The development of highly efficient nanoparticles to convert light to heat for anti-cancer applications is quite a challenging field of research. METHODS In this study, we synthesized unique pimpled gold nanospheres (PGNSs) for plasmonic photothermal therapy (PPTT). The light-to-heat conversion capability of PGNSs and PPTT damage at the cellular level were investigated using a tissue phantom model. The ability of PGNSs to induce robust cellular damage was studied during cytotoxicity tests on colorectal adenocarcinoma (DLD-1) and fibroblast cell lines. Further, a numerical model of plasmonic (COMSOL Multiphysics) properties was used with the PPTT experimental assays. RESULTS A low cytotoxic effect of thiolated polyethylene glycol (SH-PEG400-SH-) was observed which improved the biocompatibility of PGNSs to maintain 89.4% cell viability during cytometry assays (in terms of fibroblast cells for 24 hrs at a concentration of 300 µg/mL). The heat generated from the nanoparticle-mediated phantom models resulted in ΔT=30°C, ΔT=23.1°C and ΔT=21°C for the PGNSs, AuNRs, and AuNPs, respectively (at a 300 µg/mL concentration and for 325 sec). For the in vitro assays of PPTT on cancer cells, the PGNS group induced a 68.78% lethality (apoptosis) on DLD-1 cells. Fluorescence microscopy results showed the destruction of cell membranes and nuclei for the PPTT group. Experiments further revealed a penetration depth of sufficient PPTT damage in a physical tumor model after hematoxylin and eosin (H&E) staining through pathological studies (at depths of 2, 3 and 4 cm). Severe structural damages were observed in the tissue model through an 808-nm laser exposed to the PGNSs. CONCLUSION Collectively, such results show much promise for the use of the present PGNSs and photothermal therapy for numerous anti-cancer applications.
Collapse
Affiliation(s)
- Behzad Nasseri
- Chemical Engineering Department, Bioengineering Division and Bioengineering Centre, Hacettepe University, Ankara06800, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, Ankara06830, Turkey
- Bioscience Faculty, Shahid Beheshti University, Tehran, Iran
| | - Mustafa Turk
- Bioengineering Department, Kirikkale University, Kirikkale, Turkey
| | | | - Murat Kaya
- Chemical Engineering and Applied Chemistry Department, Atilim University, Ankara06830, Turkey
| | - Erhan Piskin
- Chemical Engineering Department, Bioengineering Division and Bioengineering Centre, Hacettepe University, Ankara06800, Turkey
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| |
Collapse
|
47
|
Liu Y, Wang H, Li S, Chen C, Xu L, Huang P, Liu F, Su Y, Qi M, Yu C, Zhou Y. In situ supramolecular polymerization-enhanced self-assembly of polymer vesicles for highly efficient photothermal therapy. Nat Commun 2020; 11:1724. [PMID: 32265490 PMCID: PMC7138818 DOI: 10.1038/s41467-020-15427-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/09/2020] [Indexed: 11/18/2022] Open
Abstract
Vesicular photothermal therapy agents (PTAs) are highly desirable in photothermal therapy (PTT) for their excellent light-harvesting ability and versatile hollow compartments. However, up to now, the reported vesicular PTAs are generally self-assembled from small molecules like liposomes, and polymer vesicles have seldom been used as PTAs due to the unsatisfactory photothermal conversion efficiency resulting from the irregular packing of chromophores in the vesicle membranes. Here we report a nano-sized polymer vesicle from hyperbranched polyporphyrins with favorable photothermal stability and extraordinarily high photothermal efficiency (44.1%), showing great potential in imaging-guided PTT for tumors through in vitro and in vivo experiments. These excellent properties are attributed to the in situ supramolecular polymerization of porphyrin units inside the vesicle membrane into well-organized 1D monofilaments driven by π–π stacking. We believe the supramolecular polymerization-enhanced self-assembly process reported here will shed a new light on the design of supramolecular materials with new structures and functions. Photothermal therapy (PTT) has recently emerged as a promising approach for cancer therapy. Here, the authors report a hyperbranched polymer vesicle with favorable photothermal stability and high photothermal efficiency for PTT through a supramolecular polymerization-enhanced self-assembly strategy.
Collapse
Affiliation(s)
- Yannan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Hao Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Chuanshuang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.,Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600th Nanfeng Road, Fengxian District, 201499, Shanghai, P. R. China
| | - Ping Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.,Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600th Nanfeng Road, Fengxian District, 201499, Shanghai, P. R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Meiwei Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.
| |
Collapse
|
48
|
Sharma G, Jagtap JM, Parchur AK, Gogineni VR, Ran S, Bergom C, White SB, Flister MJ, Joshi A. Heritable modifiers of the tumor microenvironment influence nanoparticle uptake, distribution and response to photothermal therapy. Theranostics 2020; 10:5368-5383. [PMID: 32373218 PMCID: PMC7196309 DOI: 10.7150/thno.41171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
We report the impact of notch-DLL4-based hereditary vascular heterogeneities on the enhanced permeation and retention (EPR) effect and plasmonic photothermal therapy response in tumors. Methods: We generated two consomic rat strains with differing DLL4 expression on 3rd chromosome. These strains were based on immunocompromised Salt-sensitive or SSIL2Rγ- (DLL4-high) and SS.BN3IL2Rγ- (DLL4-low) rats with 3rd chromosome substituted from Brown Norway rat. We further constructed three novel SS.BN3IL2Rγ- congenic strains by introgressing varying segments of BN chromosome 3 into the parental SSIL2Rγ- strain to localize the role of SSIL2Rγ- DLL4 on tumor EPR effect with precision. We synthesized multimodal theranostic nanoparticles (TNPs) based on Au-nanorods which provide magnetic resonance imaging (MRI), X-ray, and optical contrasts to assess image guided PTT response and quantify host specific therapy response differences in tumors orthotopically xenografted in DLL4-high and -low strains. We tested recovery of therapy sensitivity of PTT resistant strains by employing anti-DLL4 conjugated TNPs in two triple negative breast cancer tumor xenografts. Results: Host strains with high DLL4 allele demonstrated slightly increased tumor nanoparticle uptake but consistently developed photothermal therapy resistance compared to tumors in host strains with low DLL4 allele. Tumor micro-environment with low DLL4 expression altered the geographic distribution of nanoparticles towards closer proximity with vasculature which improved efficacy of PTT in spite of lower overall TNP uptake. Targeting TNPs to tumor endothelium via anti-DLL4 antibody conjugation improved therapy sensitivity in high DLL4 allele hosts for two triple negative human breast cancer xenografts. Conclusions: Inherited DLL4 expression modulates EPR effects in tumors, and molecular targeting of endothelial DLL4 via nanoparticles is an effective personalized nanomedicine strategy.
Collapse
Affiliation(s)
- Gayatri Sharma
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jaidip M. Jagtap
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul K. Parchur
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Sophia Ran
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sarah B. White
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J. Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
49
|
Wang X, Guo Z, Zhang C, Zhu S, Li L, Gu Z, Zhao Y. Ultrasmall BiOI Quantum Dots with Efficient Renal Clearance for Enhanced Radiotherapy of Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902561. [PMID: 32195085 PMCID: PMC7080545 DOI: 10.1002/advs.201902561] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Indexed: 05/15/2023]
Abstract
Emerging strategies involving nanomaterials with high-atomic-number elements have been widely developed for radiotherapy in recent years. However, the concern regarding their potential toxicity caused by long-term body retention still limits their further application. In this regard, rapidly clearable radiosensitizers are highly desired for practical cancer treatment. Thus, in this work, ultrasmall BiOI quantum dots (QDs) with efficient renal clearance characteristic and strong permeability inside solid tumor are designed to address this issue. Additionally, considering that injection methods have great influence on the biodistribution and radiotherapeutic efficacy of radiosensitizers, two common injection methods including intratumoral injection and intravenous injection are evaluated. The results exhibit that intratumoral injection can maximize the accumulation of radiosensitizers within a tumor compared to intravenous injection and further enhance radiotherapeutic efficacy. Furthermore, the radiosensitizing effect of BiOI QDs is revealed, which is not only attributed to the radiation enhancement of high-Z elements but also is owed to the •OH production via catalyzing overexpressed H2O2 within a tumor by BiOI QDs under X-ray irradiation. As a result, this work proposes a treatment paradigm to employ ultrasmall radiosensitizers integrated with local intratumoral injection to realize rapid clearance and high-efficiency radiosensitization for cancer therapy.
Collapse
Affiliation(s)
- Xin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zhao Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chenyang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
| | - Lele Li
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100190China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100190China
| |
Collapse
|
50
|
Wang Y, Li X, Chen P, Dong Y, Liang G, Yu Y. Enzyme-instructed self-aggregation of Fe 3O 4 nanoparticles for enhanced MRI T 2 imaging and photothermal therapy of tumors. NANOSCALE 2020; 12:1886-1893. [PMID: 31904049 DOI: 10.1039/c9nr09235h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles (NPs) can greatly enhance magnetic resonance imaging (MRI) T2-weighted imaging and near-infrared (NIR) absorption in experiments. In this study, an Ac-Arg-Val-Arg-Arg-Cys(StBu)-Lys-CBT probe was designed and coupled with monodispersed carboxyl-decorated SPIO NPs to form SPIO@1NPs, which use it for intracellular self-aggregation. In vitro experiments showed that the self-aggregation of SPIO@1NPs was induced by a condensation reaction mediated by the enzyme furin in furin-overexpressing tumor cells. Moreover, the NPs in the aggregated state showed significantly higher MR r2 values and photothermal conversion efficiency than the NPs in the monodisperse state. Then, the in vivo SPIO@1NP self-aggregation in tumors can facilitate accurate MRI T2 imaging-guided photothermal therapy for effectively killing cancer cells. We believe that this basic technique, based on tumor-specific enzyme-instructed intracellular self-aggregation of NPs, could be useful for the rational synthesis of other inorganic NPs for use in the fields of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yaguang Wang
- Department of Radiology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China.
| | | | | | | | | | | |
Collapse
|